K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

các đường thẳng qua F song song với BN và qua B song song với CP cắt nhau tại D 
a) CM : Tứ giác BDCP là hình bình hành 
b) CM : Tứ giác PNCD là hình thang 
c) CM : AM // ND và AM = ND

5 tháng 7 2019

a)  B A H ^ + M A C ^  vì cùng phụ với  A B C ^

b) A 1 ^ = C 1 ^ (1) (chứng minh a)

DABC vuông có AM là trung tuyến nên DAMC cân tại M C 1 ^ = A 4 ^ (2).

Từ (1) và (2) suy ra A 1 ^ = A 4 ^ (3)

D thuộc đường trung trực của BC.

Þ DM ^ BC = {M}

Þ  D 1 ^ = A 2 ^

Vì DM = MA (giả thiết) ⇒   M 1 ^ =   A 3 ^   ⇒   A 2 ^ = A 3 ^    (4)

Từ (3) và (4) Þ AD là phân giác chung của  M A H ^   & C A B ^

c) Theo cách vẽ và kết quả câu b), ta có AEDF là hình vuông.

d) DDBE = DDCF  (cạnh huyền - cạnh góc vuông)

a: Xét tứ giác ANDM có

\(\widehat{AND}=\widehat{AMD}=\widehat{MAN}=90^0\)

Do đó: ANDM là hình chữ nhật

5 tháng 2 2023

Trả lời đúng + được cho 5 sao

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

góc BAC=90 độ

=>ABDC là hình chữ nhật

b: Gọi giao của AH và BC là N

=>N là trung điểm của AH

=>BN là phân giác của góc ABH

=>góc ABN=góc HBN

=>góc HBC=góc ABN=góc DCB

c: Xet ΔAHD có

N,M lần lượt là trung điểm của AH,AD

nên NM là đường trung bình

=>NM//DH và NM=DH/2

=>DH//BC

mà góc DCB=góc HBC

nên DHBC là hình thang cân

17 tháng 11 2021

xin lỗi anh(chị) em mới lớp 6 không giải đc

thật lòng xin lỗi :(((((

17 tháng 11 2021

((((((((🙄)))))))))___________bn ghi như mình đi thì bn sẽ có cái nịt 👉👈!!!

9 tháng 8 2021

a/ Xét △ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AM là đường trung tuyến của △ABC vuông tại A

\(\Rightarrow AM=MB=MC=\dfrac{BC}{2}\)

\(\Rightarrow AM=\dfrac{10}{2}=5\left(cm\right)\)

Vậy: \(AM=5cm\)

==========

b/ Tứ giác ABNC là hình chữ nhật vì:

- M là trung điểm của BC (gt) và AN (N đối xứng với A qua M)

⇒ ABNC là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành)

- ABNC có \(\hat{A}=90\text{°}\left(gt\right)\) 

Vậy: ABNC là hình chữ nhật (Hình bình hành có một góc vuông là hình chữ nhật)

==========

c/ Ta có:

\(IM=IK\left(gt\right);\hat{MIC}=90\text{°}\left(gt\right)\)

⇒AC là đường trung trực của MK \(\left(1\right)\)

- Mặt khác: 

-Xét △CIM và △AIM có:

 + \(\hat{MIC}=\hat{MIA}=90\text{°}\left(gt\right)\)

 + \(IM\text{ }chung\)

 +\(AM=MC\) (AM là trung tuyến của △ABC vuông tại A)

⇒ \(\text{△CIM = △AIM(c.h-c.g.v)}\)

\(\Rightarrow IA=IC\)Mà \(\hat{MIC}=90\text{°}\)

⇒MK là đường trung trực của AC \(\left(2\right)\)

Từ (1) và (2). Vậy: Tứ giác AMCK là hình thoi (Tứ giác có hai đường chéo là đường trung trực của nhau là hình thoi)

 

 

9 tháng 8 2021

cảm ơn bạn nhìu