Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BC=2ban kinh dg tron ngoai tiep
ta co BC^2=AB^2+AC^2=2AB^2
=>2AB^2=(2*ban kinh dg tron ngoai tiep)^2
Kẽ OA cắt đường tròn tại D cắt BC tại K
Ta có OA = OB = OD = R
\(\Rightarrow\)\(\Delta ABD\) vuông tại D
\(\Rightarrow BD=\sqrt{OD^2-AB^2}=\sqrt{10^2-8^2}=6\)
Ta có OK là đường trung trực của BC nên \(\hept{\begin{cases}OK⊥BC\\BK=CK\end{cases}}\)
Ta lại có: \(S_{\Delta ABD}=\frac{1}{2}AB.BD=\frac{1}{2}AD.BK\)
\(\Rightarrow BK=\frac{AB.BD}{AD}=\frac{8.6}{10}=4,8\)
\(\Rightarrow BC=2BK=4,8.2=9,6\)
Viết nhầm tùm lum hết. Do không thấy cái hình. Mà thôi nhìn hình sửa hộ luôn nhé
Gọi O là trung điểm BC
Ta có: Tam giác ABC vuông tại A nên đường tròn ngoại tiếp tam giác ABC có cạnh huyền BC là đường kính và O là tâm đường tròn
=> Bán kính là OA,OB,OC
a: Bán kính là \(\dfrac{c}{2}\)
b: Bán kính là \(\dfrac{a\sqrt{2}}{2}\)
bài này dễ mà
có nhiêu cách tính lắm
mik sẽ trình bày một cách nha !!!
gọi O là tâm của đường tròn ngoại tiếp tam giác ABC
ta có : tam giác ABC cân taỊ A
mà AO= 1/2 BC=\(3\sqrt{2}\)
nên AO là đường trung tuyến của tam giác ABC
ĐỒNG THỜI CŨNG LÀ ĐƯỜNG cao của tam giác ABC
ta lại có : BC=2R=2*\(3\sqrt{2}\)=6\(\sqrt{2}\)
S của tam giác ABC= 1/2 *AO*BC=1/2*\(3\sqrt{2}\cdot6\sqrt{2}\)=18
vậy diện tich tam giác là 18