Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua A kẻ đường thẳng vuông góc với d, cắt BC tại D
Ta có BH,CK,DA cùng vuông góc d nên các đường thẳng này song song nhau
Suy ra được các cặp góc bằng nhau là ACK=DAC, HBA=BAD
Tam giác ABC vuông tại A nên góc BAD+DAC=90 độ
nên ta có góc HBA+ góc ACK= 90 độ (1)
Tam giác AKC vuông tại K nên góc ACK+KAC= 90 độ (2)
Từ 1 và 2 ta có góc HBA= góc KAC
Xét 2 tam giác vuông HBA và KAC có cạnh huyền AB=AC, góc HBA= góc KAC
Nên 2 tam giác này bằng nhau suy ra HB=AK, HA=CK
Do đó HB^2+CK^2=HB^2+HA^2=AB^2
Đường thẳng d bất kì đi qua A nên d có thể có các vị trí sau:
+) d không cắt cạnh BC.
Trong tam giác vuông AHB có: góc HAB + ABH = 900 (1)
Mà góc HAB + BAC + CAE = 180o => góc HAB + CAE = 180o - BAC = 180 - 90 = 90o (2)
(1)(2) => góc ABH = CAE
tam giác vuông ABH = CAE ( do cạnh huyền AB = AC; góc ABH = CAE)
=> AH = CE
*) Áp dụng định lí Pi ta go trong tam giác vuông ABH có: BH2 + AH2 = AB2
mà AH = CE nên BH2 + CE2 = BH2 + AH2 = AB2
Dễ có: AB2 + AC2 = BC2 ; AB = AC => 2.AB2 = a2 => AB2 = a2/ 2
Vậy BH2 + CE2 = a2/ 2
+) Khi d trùng với AB :
=> H trùng với B; E trùng với A=> BH = 0; CE = CA
=> BH2 + CE2 = AC2 = a2/ 2
+) d trùng với AC (tương tự như d trùng với AB)
+) Khi d cắt cạnh BC:
*) Ta cũng chứng minh : tam giác AEC = BHA (cạnh huyền - góc nhọn)
=> BH = AE
*) Trong tam giác vuông AEC có: AE2 + CE2 = AC2
=> BH2 + CE2 = AE2 + CE2 = AC2 = a2/ 2
Vậy BH2 + CE2 = AC2 = a2/ 2
a) Ta có : CE ⊥ d
BD ⊥ d
\(\Rightarrow\)CE // BD (ĐPCM)
b) Xét △CEA và △ADB có :
AC = AB
\(\widehat{EAC}=\widehat{ABD}\)(cùng phụ với \(\widehat{DAB}\))
\(\Rightarrow\) △CEA = △ADB (cạnh huyền-góc nhọn)
c) Có △CEA = △ADB
\(\Rightarrow\hept{\begin{cases}BD=AE\\CE=AD\end{cases}}\)(Cặp cạnh tương ứng)
\(\Rightarrow\)BD + CE = AE + AD = DE (ĐPCM)
d) △ABC vuông tại A có AM là trung tuyến
\(\Rightarrow\)AM = BM = CM
\(\Rightarrow\)△ABM cân tại M
Có : \(\widehat{ECA}=\widehat{BAD}\)(△CEA = △ADB)
\(\widehat{ACB}=\widehat{ABC}\) (△ABC cân tại A)
\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{ABC}\)
Mà \(\widehat{ABC}=\widehat{MAB}\)(△MAC cân tại M)
\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{MAB}\)
\(\Rightarrow\widehat{ECM}=\widehat{MAD}\)
Xét △ADM và △CEM có :
EC = AD
\(\widehat{ECM}=\widehat{MAD}\)
AM = CM
\(\Rightarrow\)△ADM = △CEM (c-g-c) (ĐPCM)
\(\Rightarrow\)EM = MD (Cặp cạnh tương ứng) (1)
Có : \(\widehat{EMA}+\widehat{EMC}=90^o\)
\(\widehat{EMC}=\widehat{DMA}\)(△ADM = △CEM)
\(\Rightarrow\widehat{EMA}+\widehat{DMA}=90^o\)
\(\Rightarrow\widehat{EMD}=90^o\)(2)
Từ (1) và (2) suy ra △DME vuông cân tại M.
2. Cho tam giác ABC vuông cân tại A.. Qua A vẽ đường thẳng d ở ngoài tam giác ABC . Vẽ BD vuông góc với d taị D. CE vuông góc với d tại E. M là trung điểm CB. Chứng minh rằng:
a) BD + CE = DE
b) Tam giác MDE là tam giác vuông cân