K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ

BC^2=AB^2+AC^2

BC^2=6^2+8^2=100

BC=10

b, Xét tam giác ABC và tam giác AHB có

góc BAC=góc BHA=90độ

B góc chung

=> tam giác ABC đồng dạng với tam giác HBA ( gg)

c => AB/HB = BC/BA => AB^2 = HB.BC

26 tháng 7 2021

a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ

BC2=AB2+AC2

BC2=62+82=100

BC=10

b, Xét tam giác ABC và tam giác AHB có

góc BAC=góc BHA=90độ

B góc chung

=> tam giác ABC đồng dạng với tam giác HBA ( gg)

c => AB/HB = BC/BA => AB2 = HB.BC

a: BC=10cm

b: Xét ΔCAB vuông tại A và ΔAHB vuông tại H có 

\(\widehat{CBA}\) chung

Do đó: ΔCAB\(\sim\)ΔAHB

c: Ta có: ΔCAB\(\sim\)ΔAHB

nên AC/HA=AB/HB=CB/AB

hay \(AB^2=BH\cdot BC\)

BH=3,6cm

=>CH=6,4cm

17 tháng 3 2023

Ủa còn câu D đâu

 

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

c: ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

BH=AB^2/BC=6^2/10=3,6cm

CH=10-3,6=6,4cm

d: AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=10/7

=>DB=30/7cm

17 tháng 4 2022

a. áp dụng định lý py-ta-go vào tam giác ABC, ta có:

AB2+AC2=BC2

62+82= BC2

36+64= BC2

BC2=100

BC= 10 (cm)

b. bạn thiếu đề rồi ạ.

29 tháng 3 2021

a/ Áp dụng định lý Pytago vào \(\Delta ABC\) vuông tại \(A\):

\(\to BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\) (cm)

b/ Xét \(\Delta BAC\) và \(\Delta BHA\):

\(\widehat{B}:chung\)

\(\widehat{BAC}=\widehat{BHA}(=90^\circ)\)

\(\to \Delta BAC\backsim \Delta BHA\) (g-g)

c/ \(AH\cdot BC=AC\cdot AB\)

\(\to AH=\dfrac{AC\cdot AB}{BC}=\dfrac{6\cdot 8}{10}=4,8\) (cm)

Áp dụng định lý Pytago vào \(\Delta AHB\) vuông tại \(H\)

\(\to BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=\sqrt{12,96}=3,6\) (cm)

\(S_{\Delta AHB}=\dfrac{1}{2}\cdot AH\cdot BH=\dfrac{1}{2}\cdot 4,8\cdot 3,6=8,64(cm^2)\)

Thiếu điểm D nên không tính được diện tích tam giác BDC

sao làm dài dòng quá vậy

 

29 tháng 6 2016

a, áp dụng đ/lý pytago vào tam giác ABC có A =90 độ

\(BC^2=AB^2+AC^2\)

\(BC^2=6^2+8^2=100\)

\(BC=10\)

b, Xét tam giác ABC và tam giác AHB có

góc BAC=góc  BHA=90độ

b góc chung

=> tam giác ABC đồng dạng với tam giác HBA ( gg)

c => \(\frac{AB}{HB}=\)\(\frac{BC}{BA}\) => \(AB^2=HB.BC\)

29 tháng 6 2016

ths bạn, nhưng k có câu D à bạn a,b,c mình cx làm đc r =((

b)Chứng minh ABC   AHB???

23 tháng 1 2022

a, Theo pytago tam giác ABC vuông tại A

\(BC=\sqrt{36+64}=10cm\)

b, Xét tam giác ABC và tam giác AHB

^BAC = ^AHB = 900 

^B _ chung 

Vậy tam giác BAC ~ tam giác BHA ( g.g ) 

c, => AB / BH = BC / AB => AB^2 = BH.BC 

=> BH = AB^2/BC = 36/10 = 18/5 cm 

=> CH = BC - BH = 32/5 cm 

d, Ta có AD là đường pg 

\(\dfrac{AB}{AC}=\dfrac{DB}{DC}\Rightarrow\dfrac{DC}{AC}=\dfrac{DB}{AB}\)

Theo tc dãy tỉ số bằng nhau

\(\dfrac{DC}{AC}=\dfrac{DB}{AB}=\dfrac{DC+DB}{AC+AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow DB=\dfrac{5}{7}.6=\dfrac{30}{7}cm\)

 

a: BC=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

DO đó: ΔABC\(\sim\)ΔHBA

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot CB\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{HBA}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)