Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC
nên \(AD\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)
a) Do AH là đường cao trong tam giác ABC cân tại A
\(\Rightarrow\) AH cũng là đường trung tuyến trong tam giác ABC
Suy ra H là trung điểm của BC.
mà AH//BD (vì cùng vuông góc với BC)
\(\Rightarrow\) AH là đường trung bình của tam giác DBC
\(\Rightarrow\) 2AH=BD
b)Áp dụng hệ thức trong tam giác vuông có
\(\dfrac{1}{BK^2}=\dfrac{1}{BD^2}+\dfrac{1}{BC^2}=\dfrac{1}{\left(2AH\right)^2}+\dfrac{1}{BC^2}\) \(=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
Vậy...
a)) Xét tam giác ABC cân tại A có AH là đường cao => AH cũng là đường trung tuyến
=> BH = HC
Xét tam giác BCD có: AH // BD (vì cùng vuông góc với BC) và H là trung điểm của BC
=> AH là đường trung bình ==> \(AH=\frac{1}{2}BD\)=> BD = 2AH
b) Xét tam giác BCD vuông tịa B có BK là đường cao
=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{BD^2}\) (hệ thức lượng trong tam giác vuông)
=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{\left(2AH\right)^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(HA\cdot HC=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HE là đường cao
nên \(BE\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)
a/ Đặt BH = x (x>0) (đvđd) => CH = 100-x (đvđd)
Áp dụng hệ thức về cạnh trong tam giác ta có : \(BH.HC=AH^2\) hay
\(x\left(100-x\right)=48^2\Leftrightarrow x^2-100x+48^2=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=36\\x=64\end{array}\right.\)
1. Nếu x = 36 thì \(AB=\sqrt{AH^2+BH^2}=\sqrt{48^2+36^2}=60\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{48^2+64^2}=80\)
2. Nếu x = 64 thì AB = 80 , AC = 60
b/ Ta có : góc ABD = góc ACB => góc ABD + góc ABC = góc ACB + góc ABC = 90 độ
=> BC vuông góc với BD tại B
Áp dụng hệ thức về cạnh trong tam giác vuông BDC có đường cao AB :
\(\frac{1}{AB^2}=\frac{1}{BD^2}+\frac{1}{BC^2}\)(đpcm)