Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB^2 = BH x BC (1)
AC^2 = HC x BC (2)
Lấy (1) : (2) => AB^2/AC^2 = BH/HC <=> 9/49 = BH/CH
Vậy tỉ lệ BH:HC cần tìm là 9:49
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{9}{49}\)
\(\Leftrightarrow BH=\dfrac{9}{49}CH\)
Ta có: \(BH\cdot CH=AH^2\)
\(\Leftrightarrow CH^2\cdot\dfrac{9}{49}=42^2=1764\)
\(\Leftrightarrow CH^2=9604\)
\(\Leftrightarrow CH=98\left(cm\right)\)
\(\Leftrightarrow BH=18\left(cm\right)\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)
nên \(AB=\dfrac{3}{7}AC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{7}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{42^2}\)
\(\Leftrightarrow\dfrac{1}{\dfrac{9}{49}AC^2}+\dfrac{\dfrac{9}{49}}{\dfrac{9}{49}AC^2}=\dfrac{1}{1764}\)
\(\Leftrightarrow AC^2\cdot\dfrac{9}{49}=2088\)
\(\Leftrightarrow AC^2=11368\)
\(\Leftrightarrow AC=14\sqrt{58}\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{3}{7}\cdot14\sqrt{58}=6\sqrt{58}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=\left(6\sqrt{58}\right)^2+\left(14\sqrt{58}\right)^2=13456\)
hay BC=116(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=\dfrac{\left(6\sqrt{58}\right)^2}{116}=18\left(cm\right)\\CH=\dfrac{AC^2}{CH}=\dfrac{\left(14\sqrt{58}\right)^2}{116}=98\left(cm\right)\end{matrix}\right.\)
Ta có: AB:AC=3:4
nên \(AB=\dfrac{3}{4}AC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{4}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}=\dfrac{1}{36}\)
\(\Leftrightarrow\dfrac{1}{\dfrac{9}{16}AC^2}+\dfrac{\dfrac{9}{16}}{\dfrac{9}{16}AC^2}=\dfrac{1}{36}\)
\(\Leftrightarrow AC^2\cdot\dfrac{9}{16}=36\cdot\dfrac{25}{16}=\dfrac{225}{4}\)
\(\Leftrightarrow AC^2=100\)
hay AC=10(cm)
Ta có: \(AB=\dfrac{3}{4}AC\)
nên \(AB=\dfrac{3}{4}\cdot10=7.5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=7.5^2-6^2=4.5^2\)
hay BH=4,5(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=10^2-6^2=64\)
hay HC=8(cm)
Ta có: A B A C = 3 7 ⇒ A B = 3 7 A C
Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:
1 A H 2 = 1 A B 2 + 1 A C 2 ⇔ 1 42 2 = 49 9 A C 2 + 1 A C 2 ⇔ 1 42 2 = 58 9 A C 2 ⇔ A C 2 = 11369
AC = 14 58 (cm) AB = 3 7 . 14 58 = 6 58 (cm)
Áp dụng định lý Pytago cho ABH vuông tại A có: A B 2 + A C 2 = B C 2
⇔ B C 2 = 6 58 2 + 14 58 2 ⇔ B C 2 = 13456 ⇒ B C = 116 c m
Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:
Đáp án cần chọn là: A
Xét tam giác vuông AHB và CHA có :
góc AHB = góc CHA = 90độ
góc ABH = góc CAH ( cùng phụ với góc C )
Vậy tam giác AHB đồng dạng tam giác CHA ( g.g )
Suy ra : \(\frac{AH}{HC}=\frac{AB}{CA}\) ( 1 )
Theo đề bài \(\frac{AB}{AC}=\frac{3}{4}\) và AH = 12cm ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{12}{HC}=\frac{3}{4}\Rightarrow HC=\frac{12.4}{3}=16\) ( cm )
Theo hệ thức liên hệ giữa đường cao và hình chiếu , ta có :
\(AH^2=HB.HC\Rightarrow HB=\frac{AH^2}{HC}=\frac{12^2}{16}=9\) ( cm )
Vậy BH = 9cm , HC = 16cm
Học tốt