Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Delta ABC,\hat{BAC}=90^o\)
\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)
\(\Leftrightarrow10^2=6^2+AC^2\)
\(\Leftrightarrow AC^2=64\)
\(\Leftrightarrow AC=8\left(cm\right)\)
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào \(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\) ta có:
\(AB^2=BH.BC\Leftrightarrow6^2=BH.10\Leftrightarrow BH=3,6\left(cm\right)\)
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)\(\Leftrightarrow AH^2=\frac{576}{25}\Leftrightarrow AH=4,8\left(cm\right)\)
Chu vi tam giác ABC: 6 + 10 + 8 = 24 (cm)
Diện tích tam giác ABC: \(\frac{4,8.10}{2}=24\left(cm^2\right)\)
tam giác ABC vuông tại A=> BC^2=AB^2+AC^2=> BC=\(\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
tam giác ABC có AD là phân giác => DB/DC=AB/AC=> DB/AB=DC/AC=DC+DB/AC+AB=10/6+8=5/7
=> DB=5/7.AB=5/7.6=30/7cm,DC=5/7.8=40/7cm
Ta sẽ chứng minh:\(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge3\left(a+b+c\right)^2\)
Theo nguyên lí Dirichlet, luôn tồn tại ít nhất 2 trong 3 số \(a^2-1,b^2-1,c^2-1\) cùng dấu.
Giả sử đó là \(b^2-1,c^2-1\Rightarrow\left(b^2-1\right)\left(c^2-1\right)\ge0\)
\(\because\) \(\left(a^2+1+1\right)\ge\frac{\left(a+b+c\right)^2}{b^2+c^2+1}\) (Bunyakovski)\(\therefore VT\ge\frac{\left(b^2+2\right)\left(c^2+2\right)\left(a+b+c\right)^2}{b^2+c^2+1}\ge3\left(a+b+c\right)^2\)\(\Leftrightarrow\left(b^2+2\right)\left(c^2+2\right)\ge3\left(b^2+c^2+1\right)\)
\(\Leftrightarrow\left(b^2-1\right)\left(c^2-1\right)\ge0\) (đúng do giả sử)
Từ đó dẫn đến kết luận.
Cách khác: Xét hiệu 2 vế, thu được:
Đúng vì: \(2b^2c^2+b^2-6bc+c^2+2=2\left(bc-1\right)^2+\left(b-c\right)^2\ge0\)
Kiên trì lắm mới làm đây,đang làm tự nhiên máy load lại :(
Áp dụng định lý đường phân giác\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)
Áp dụng định lý Pythagoras:\(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Đặt \(BD=3k;DC=4k\)
Ta có:\(BD+DC=BC\Rightarrow3k+4k=10\Rightarrow k=\frac{10}{7}\)
\(\Rightarrow BD=\frac{30}{7}\left(cm\right);DC=\frac{40}{7}\left(cm\right)\)
b
Áp dụng định lý Thales:\(\frac{DH}{AC}=\frac{BH}{HA}=\frac{BD}{DC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\Rightarrow DH=\frac{3}{4}\cdot8=6\left(cm\right)\)
Đặt \(BH=3q;AH=4q\)
Ta có:\(BH+AH=AC\Rightarrow3q+4q=8\Rightarrow q=\frac{8}{7}\)
\(\Rightarrow AH=\frac{32}{7}\left(cm\right)\)
Áp dụng định lý Pythagoras:\(AH^2+HD^2=AD^2\Rightarrow AD=\sqrt{AH^2+HD^2}=\frac{2\sqrt{697}}{7}\)
Cách 2:
Có một đẳng thức trong tam giác rất đẹp như sau:\(AD^2=AB\cdot AC-BD\cdot DC\)
\(\Rightarrow AD=\sqrt{AB\cdot AC-BD\cdot DC}=\frac{24\sqrt{2}}{7}\)
Tuy nhiên 2 kết quả trên lại khác nhau,mọi người tìm chỗ sai giúp mik được ko ạ ?
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{6}=\dfrac{CD}{8}\)
mà BD+CD=10cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{30}{7}cm;CD=\dfrac{40}{7}cm\)
a)Ta có: 62+82=102
⇒ AB2+AC2=BC2
⇒ ΔABC vuông tại A (Py-ta-go đảo)
b)Ta có:\(AB^2=BD.BC\Leftrightarrow BD=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\) (hệ thức lượng)
Ta có: \(AC^2=CD.BC\Leftrightarrow CD=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4cm\) (HTL)
Ta có: \(AD.BC=AB.AC\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\) (HTL)
c)Vì P là hình chiếu của D trên AB
⇒DP⊥AB \(\Rightarrow\widehat{APD}=90^o\)
Xét ΔAPD và ΔADB có:
\(\widehat{A}:chung\)
\(\widehat{APD}=\widehat{ADB}=90^o\)
⇒ ΔAPD ∼ ΔADB (g-g)
\(\Rightarrow\dfrac{AP}{AD}=\dfrac{AD}{AB}\Rightarrow AP.AB=AD^2\) (1)
Chứng minh tương tự,ta có: ΔADQ ∼ ΔACD (g-g)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AQ}{AD}\Rightarrow AC.AQ=AD^2\) (2)
Ta có: AD2 = BD.CD (HTL) (3)
Từ (1)(2)(3)⇒AP.AB=AC.AQ=BD.CD=AD2
d)Xét tg APDQ có: \(\widehat{DPA}=\widehat{PAQ}=\widehat{AQD}=90^o\)
⇒ APDQ là hình chữ nhật
⇒ AD=PQ và \(\widehat{PDQ}=90^o\)
Ta có: AP.BP=DP2 (HTL trong ΔADB)
AQ.CQ=DQ2 (HTL trong ΔADC)
⇒ AP.BP+AQ.CQ=DP2+DQ2=PQ2 (Py-ta-go trong ΔPDQ vuông tại D)
Mà PQ=AD ⇒ AP.BP+AQ.CQ=AD2
e) Ta có: PQ=AD (cmt)
Mà AD = 4,8 cm
⇒ PQ = 4,8 cm
d) Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)
hay \(\widehat{B}\simeq53^0\)
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=70^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{C}=37^0\)
Vì \(AC\perp AB;HD\perp AB\Rightarrow AC//HD\)
Áp dụng hệ quả Ta lét ta có : \(\frac{BD}{BC}=\frac{HD}{AC}\)(*)
Vì AD là đường phân giác ^A nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)
Lại có : \(BC^2=AB^2+AC^2=36+64=100\Rightarrow BC=10\)cm
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{10}{14}=\frac{5}{7}\)
\(\Rightarrow DC=\frac{5}{7}AC=\frac{5}{7}.8=\frac{40}{7}\)cm ; \(BD=\frac{5}{7}AB=\frac{5}{7}.6=\frac{30}{7}\)cm
Thay vào (*) ta được : \(\frac{\frac{30}{7}}{10}=\frac{HD}{8}\Rightarrow10HD=\frac{240}{7}\Rightarrow HD=\frac{24}{7}\)cm
Có : \(\frac{BH}{AB}=\frac{HD}{AC}\)( hệ quả Ta lét ) \(\Rightarrow BH=\frac{AB.HD}{AC}=\frac{6.\frac{24}{7}}{8}=\frac{18}{7}\)cm
\(\Rightarrow AH=AB-BH=6-\frac{18}{7}=\frac{24}{7}\)cm
Áp dụng định lí Pytago tam giác AHD vuông tại H ta có :
\(AD^2=AH^2+HD^2=\left(\frac{24}{7}\right)^2+\left(\frac{24}{7}\right)^2=2\left(\frac{24}{7}\right)^2\)
\(\Rightarrow AD=\frac{24\sqrt{2}}{7}\)cm o.O bạn check lại xem nhé