K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2022

a) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\) (Pytago).

Thay: \(BC^2=3^2+4^2.\)

\(\Rightarrow BC=5\left(cm\right).\)

Xét \(\Delta ABC:\)

BD là đường phân giác (gt).

\(\Rightarrow\dfrac{AD}{CD}=\dfrac{AB}{BC}\) (Tính chất đường phân giác).

\(\Rightarrow\dfrac{AD}{CD+AD}=\dfrac{AB}{BC+AB}.\)

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{BC+AB}.\)

Thay: \(\dfrac{AD}{4}=\dfrac{3}{5+3}.\)

\(\Rightarrow AD=1,5\left(cm\right).\)

\(\Rightarrow CD=BC-AD=5-1,5=3,5\left(cm\right).\)

b) Xét \(\Delta ABC:\)

DK // AB (gt).

\(\Rightarrow\dfrac{BK}{CK}=\dfrac{AD}{CD}\left(Talet\right).\)

Mà \(\dfrac{AD}{CD}=\dfrac{AB}{BC}\left(cmt\right).\)

\(\Rightarrow\dfrac{BK}{CK}=\dfrac{AB}{BC}.\\ \Rightarrow BK.BC=AB.CK.\)

20 tháng 7 2017
  1. 22222222​​
  2. 2
  3. 3
  4. 3
  5. 3
  6. 3
  7. 3
  8. 3
  9. 3
  10. 3
1 tháng 4 2021

a) Xét tam giác AHD và tam giác CKD có:

AHD=CKD=90

\(D_1=D_2\) (2 góc đối đỉnh)

=> tam giác AHD đồng dạng tam giác CKD (g-g)

=> đpcm

1 tháng 4 2021

b) Xét tam giác AHB và tam giác CKB có

AHB=BKC=90

ABD=DBC ( BD là tia phân giác ABC)

=> Tam giác AHB đồng dạng CKB (g-g)

=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)

a) Xét ΔAHD vuông tại H và ΔCKD vuông tại K có 

\(\widehat{ADH}=\widehat{CDK}\)(hai góc đối đỉnh)

Do đó: ΔAHD\(\sim\)ΔCKD(g-g)

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao...
Đọc tiếp
  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD.                              d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh GH // AC và PT vuông góc  với AD.    Giúp mik câu c) và d) với! (các bạn cứ coi như câu a) và b) đã có sẵn trg giả thiết đi, vì mk mới giải đc 2 câu đấy thôi.) Thanks
0
23 tháng 12 2023

a: Ta có: DB\(\perp\)AB

AC\(\perp\)AB

Do đó: DB//AC

Xét ΔECA có DB//AC

nên \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)

b: Xét ΔCEK có DB//EK

nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\)(1)

Xét ΔAEI có DB//EI

nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\left(2\right)\)

Ta có: \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)

=>\(\dfrac{BE+BA}{BA}=\dfrac{DE+DC}{DC}\)

=>\(\dfrac{AE}{BA}=\dfrac{CE}{DC}\)

=>\(\dfrac{CD}{CE}=\dfrac{AB}{AE}\left(3\right)\)

Từ (1),(2),(3) suy ra EI=EK