K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên \(AM=\dfrac{BC}{2}\)

hay BC=20(cm)

Theo đề, ta có: \(HB\left(20-HB\right)=64\)

\(\Leftrightarrow HB^2-20HB+64=0\)

\(\Leftrightarrow HB=4\left(cm\right)\)

\(\Leftrightarrow HC=16\left(cm\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=4\sqrt{5}\left(cm\right)\\AC=8\sqrt{5}\left(cm\right)\end{matrix}\right.\)

a: AB=2AC

AB^2/AC^2=BH/HC

=>BH/HC=2^2=4

=>BH=4HC

AH^2=HB*HC

=>4HC^2=a^2

=>HC=a/2

=>BH=4*a/2=2a

BC=2a+a/2=5/2*a

\(AB=\sqrt{2a\cdot\dfrac{5}{2}a}=a\sqrt{5}\)

\(AC=\sqrt{2a\cdot\dfrac{1}{2}a}=a\)

b: AM=BC/2=5/4a

MH=căn AM^2-AH^2=căn (5/4a)^2-a^2=3/4a

 

10 tháng 11 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=25^2-15^2=400\)

=>AC=20(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot25=15\cdot20=300\)

=>AH=12(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{15^2}{25}=9\left(cm\right)\\CH=\dfrac{20^2}{25}=16\left(cm\right)\end{matrix}\right.\)

b: I là trung điểm của AH

=>IA=IH=12/2=6cm

Xét ΔCBK có HI//BK

nên \(\dfrac{HI}{BK}=\dfrac{CH}{CB}\)

=>\(\dfrac{6}{BK}=\dfrac{16}{25}\)

=>\(BK=6\cdot\dfrac{25}{16}=9,375\left(cm\right)\)

 

15 tháng 11 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-37^0=53^0\)

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB=BC/2

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)

\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)

\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)

Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)

c: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AFE}=\widehat{AHE}\)

mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AFE}=\widehat{ABC}\)

\(\widehat{AFE}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>FE vuông góc AM tại K

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(HA^2=AE\cdot AB\)

=>\(AE\cdot6=4,8^2\)

=>\(AE=3,84\left(cm\right)\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)

Xét ΔAEF vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)

=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)

=>AK=2,304(cm)

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

a: AH=15cm

\(AB=5\sqrt{34}\left(cm\right)\)