Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ M là trung điểm của BC.
Xét tam giác MAE và tam giác MBD có: MA = MB (do tam giác ABC vuông cân tại A), AE = BD (chứng minh trên), \(\widehat{MBD}=\widehat{MAE}\).
Do đó \(\Delta MAE = \Delta MBD(c.g.c)\Rightarrow MD=ME; \widehat{AME}=\widehat{BMD})\Rightarrow MD=ME; \widehat{EMD}=\widehat{AMB}=90^o\Rightarrow\text{Tam giác MDE vuông cân tại M}\).
Ta có \(\Delta ADB=\Delta CEA\left(g.c.g\right)\)
\(\Rightarrow BD=EA\).
Do đó \(BD^2+CE^2=EA^2+CE^2=AC^2\) không đổi.
a) tam giac ABE=DBE (canh huyen -canh goc vuong )
(chac la biet lam nhi?)
b) vi tam giac ABE=tam giac DBE
=>AE=ED
va goc ABE =goc EBD hay goc FBE= goc CBE
xet tam giac FAE va tam giac CDE co:
AE=ED(cmt)
goc FAE=goc CDE(=90)
goc AEF =goc CED(doi dinh)
=>tam giac FAE=tam giac CDE(g.c.g)
=> EF=EC
c)ta co:BD=AB(cmt)
=>B cach deu 2 đầu mút đoạn thẳng AD
=>B thuộc đường trung trực của AD (1)
lai co:AE=ED(cmt)
=>E cach deu 2 đầu mút đoạn thẳng AD
=>E thuộc đường trung trực của AD (2)
tu (1) va (2) =>BE la duong trung truc cua AD
a: BC=căn 6^2+8^2=10cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=1
=>AD=3cm
b: Xét ΔABD vuông tại A và ΔEBC vuông tại E có
góc ABD=góc EBC
=>ΔABD đồng dạng với ΔEBC
c: ΔABD đồng dạng với ΔEBC
=>AD/EC=AB/EB
=>AD/AB=EC/EB
=>CD/BC=EC/EB