K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2023

a: Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)

=>\(HB^2=6^2-4,8^2=12.96\)

=>\(HB=\sqrt{12,96}=3,6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BA^2=BH\cdot BC\)

=>\(BC=\dfrac{6^2}{3,6}=10\left(cm\right)\)

Xét ΔABC vuông tại A có \(AB^2+AC^2=BC^2\)

=>\(AC^2+6^2=10^2\)

=>\(AC^2=100-36=64\)

=>\(AC=\sqrt{64}=8\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

b: Xét ΔHAD có \(\widehat{AHD}=90^0\); HA=HD

nên ΔAHD vuông cân tại H

Xét tứ giác IDBA có \(\widehat{IDB}+\widehat{IAB}=90^0+90^0=180^0\)

nên IDBA là tứ giác nội tiếp

=>\(\widehat{AIB}=\widehat{ADB}=45^0\)

Xét ΔAIB có \(\widehat{BAI}=90^0;\widehat{AIB}=45^0\)

nên ΔAIB vuông cân tại A

=>AI=AB

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

b: Xét ΔABD có

AH vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

=>tan ADH=tan ABD=tan ABC=AC/AB=4/3

Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC=HD*HC

25 tháng 9 2023

có ai giải được câu d bài này k?

4 tháng 8 2021

Cho mình xin câu D thoi ạ

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=1.8\cdot3.2=5.76\)

hay AH=2,4cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=1.8\cdot5=9\\AC^2=3.2\cdot5=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=3\left(cm\right)\\AC=4\left(cm\right)\end{matrix}\right.\)

a: BC=BH+CH

=2+8

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH

c: ΔHDB vuông tại D 

mà DM là đường trung tuyến

nên DM=HM=MB

\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)

\(=\widehat{EAH}+\widehat{MHD}\)

\(=90^0-\widehat{C}+\widehat{C}=90^0\)

=>DE vuông góc DM

25 tháng 10 2021

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

26 tháng 10 2021

Giải dùm em câu d nữa ạ

 

10 tháng 7 2018

hình tự vẽ nhé:

 \(BC=BH+HC=16+81=97\)

Áp dụng hệ thức lượng ta có:

     \(AB^2=BH.BC\)

\(\Rightarrow\)\(AB^2=16.97=1552\)

\(\Rightarrow\)\(AB=\sqrt{1552}=4\sqrt{97}\)

    \(AC^2=HC.BC\)

\(\Rightarrow\)\(AC^2=81.97=7857\)

\(\Rightarrow\)\(AC=\sqrt{7857}=9\sqrt{97}\)

    \(AH.BC=AB.AC\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}\)

\(\Rightarrow\)\(AH=\frac{4\sqrt{97}.9\sqrt{97}}{97}=36\)

    \(AD.AB=AH^2\)

    \(AE.AC=AH^2\)

suy ra:  \(AD.AB=AE.AC\)