Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
b: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
=>tan ADH=tan ABD=tan ABC=AC/AB=4/3
Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC=HD*HC
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=1.8\cdot3.2=5.76\)
hay AH=2,4cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=1.8\cdot5=9\\AC^2=3.2\cdot5=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=3\left(cm\right)\\AC=4\left(cm\right)\end{matrix}\right.\)
a: BC=BH+CH
=2+8
=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>DE=AH
c: ΔHDB vuông tại D
mà DM là đường trung tuyến
nên DM=HM=MB
\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)
\(=\widehat{EAH}+\widehat{MHD}\)
\(=90^0-\widehat{C}+\widehat{C}=90^0\)
=>DE vuông góc DM
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(HA\cdot HC=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HE là đường cao
nên \(BE\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)
hình tự vẽ nhé:
\(BC=BH+HC=16+81=97\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(AB^2=16.97=1552\)
\(\Rightarrow\)\(AB=\sqrt{1552}=4\sqrt{97}\)
\(AC^2=HC.BC\)
\(\Rightarrow\)\(AC^2=81.97=7857\)
\(\Rightarrow\)\(AC=\sqrt{7857}=9\sqrt{97}\)
\(AH.BC=AB.AC\)
\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}\)
\(\Rightarrow\)\(AH=\frac{4\sqrt{97}.9\sqrt{97}}{97}=36\)
\(AD.AB=AH^2\)
\(AE.AC=AH^2\)
suy ra: \(AD.AB=AE.AC\)
a: Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)
=>\(HB^2=6^2-4,8^2=12.96\)
=>\(HB=\sqrt{12,96}=3,6\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BA^2=BH\cdot BC\)
=>\(BC=\dfrac{6^2}{3,6}=10\left(cm\right)\)
Xét ΔABC vuông tại A có \(AB^2+AC^2=BC^2\)
=>\(AC^2+6^2=10^2\)
=>\(AC^2=100-36=64\)
=>\(AC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
b: Xét ΔHAD có \(\widehat{AHD}=90^0\); HA=HD
nên ΔAHD vuông cân tại H
Xét tứ giác IDBA có \(\widehat{IDB}+\widehat{IAB}=90^0+90^0=180^0\)
nên IDBA là tứ giác nội tiếp
=>\(\widehat{AIB}=\widehat{ADB}=45^0\)
Xét ΔAIB có \(\widehat{BAI}=90^0;\widehat{AIB}=45^0\)
nên ΔAIB vuông cân tại A
=>AI=AB