K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{B}\) chung

Do đó: ΔABC đồng dạng với ΔHBA

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

=>\(BA^2=BH\cdot BC\)

b:ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=12^2+16^2=400\)

=>\(BC=\sqrt{400}=20\left(cm\right)\)

\(BA^2=BH\cdot BC\)

=>\(BH=\dfrac{12^2}{20}=7,2\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2+7,2^2=12^2\)

=>\(HA^2=12^2-7,2^2=9,6^2\)

=>HA=9,6(cm)

c: Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{CD}=\dfrac{BA}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\)

=>\(S_{ABD}=\dfrac{3}{5}\cdot S_{BCD}\)

12 tháng 4 2017

Xét hai tam giác ABC và tam giác HBA có 

A = H = 90 

B là góc chung 

=> tam guacs ABC đồng dạng với tam giác HBA (g _ g) (1) 

Xét hai tam giác ABC và tam giác HCA có 

A= H = 90  

C là góc chung 

=> tam giác ABC ~ tam giác HAC ( g_ g) (2) 

(1) =>\(\frac{AB}{BC}=\frac{BH}{BA}\)=> AB.AB = BH.BC => \(AB^2\)\(=BH.BC\) 

(2) => \(\frac{AC}{BC}=\frac{CH}{AC}=AC.AC=BC.CH=AC^2=BC.CH\)

b ) Áp dụng định lý Py - ta - go vào tam giác ABC 

\(BC^2=AC^2+AB^2\)\(16^2+12^2\)= 400 

=> BC = \(\sqrt{400}=20\)

từ tam giác ABC ~ HBA  =>\(\frac{AB}{BH}=\frac{BC}{BA}< =>\frac{12}{BH}=\frac{20}{12}=>BH=\frac{12.12}{20}=7,2\)

từ tam giác ABC ~ HAC => \(\frac{AB}{HA}=\frac{BC}{AC}< =>\frac{12}{HC}=\frac{20}{16}=>HC=\frac{12.16}{20}=9,6\)

Áp dụng định lý Py - ta - go vào tam giác HBA 

\(AH^2=AB^2-HB^2=12^2-7,2^2=9,6\)

a: CB=10cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA^2=BH*BC

c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>BA/BH=BD/BI

=>BA/BD=BH/BI

=>BA/BH=BD/BI=BC/BA

=>ΔBDC đồng dạng với ΔBIA

3 tháng 5 2023

a)Có tg ABC vuông tại a

áp dụng đl pytago ta có:

\(BC^2=AB^2+AC^2=6^2+8^2=100\\ \Rightarrow BC=10\left(cm\right)\)

Có BD là đg phân giác tg ABC 

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\left(1\right)\)

lai co: AD+DC=AC=8

=>AD=8-DC

thay vao 1

\(\Rightarrow\dfrac{8-DC}{DC}=\dfrac{3}{5}\)

\(\Leftrightarrow DC=5\\ \Rightarrow AD=3\)

b) xét tg ABC và tg HBA có:

+góc BAH = AHB(=90 độ)

+góc B chung

=> tg ABC đồng dạng tg HBA (gg) (đpcm)

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{BA}\\ \Leftrightarrow AB^2=HB.BC\left(dpcm\right)\)

c) có: + góc C =\(90^o-\widehat{B}\)  (goc A = 90 do)

\(\widehat{BAH}=90^o-\widehat{B}\)  (goc AHB =90do)

=> goc BAH = goc C

xet tg ABI va tg CBD co

+goc BAH =goc C

+ goc ABI = goc DBC (BD la phan giac)

=> tg ABI va tg CBD dong dang (g.g) (dpcm)

 

 

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Vậy: BC=15cm

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

Suy ra: HB/HA=HA/HC

hay \(HA^2=HB\cdot HC\)

10 tháng 5 2022

tham khảo 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC∼∼ΔHBA

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

ˆHBA=ˆHACHBA^=HAC^

Do đó: ΔHBA∼∼ΔHAC

Suy ra: HB/HA=HA/HC

hay HA2=HB⋅HC

15 tháng 3 2022

\(a.\) Xét \(\Delta ABC\) và \(\Delta HBA:\)

\(\widehat{B}chung.\)

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)

\(b.\) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=30^2+40^2=2500.\\ \Rightarrow BC=50\left(cm\right).\)

Xét \(\Delta ABC\) vuông tại A, đường cao AH:

\(AH.BC=AB.AC\) (Hệ thức lượng).

\(\Rightarrow AH.50=30.40.\\ \Rightarrow AH=24\left(cm\right).\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(\dfrac{S_{HBA}}{S_{ABC}}=\left(\dfrac{BA}{BC}\right)^2=\dfrac{9}{25}\)

c: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=7.2\left(cm\right)\)

CH=BC-BH=12,8(cm)

21 tháng 4 2022

xét tam giác ABC và tam giác HBA có

góc BAC=góc AHB=90 độ

góc B chung

suy ra tam giác ABC đồng dạng với tam giác HBA

suy ra AB phần HB = BC phần AB