Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét ▲ABD VÀ▲ EBD có
BD là cạnh chung
góc ABD= góc DBE
AB= BE
nên Δ ABD=Δ EBD (c.g.c)
b) vì Δ ABD=Δ EBD (cmt)
→ góc BED= góc BAC (2 góc tương ứng)
c) ta có:
AH VUÔNG VỚI BC
→ góc AHE = 90o (1)
góc bed = 90o (cmt) (2)
từ (1) và (2) suy ra DE song song với AH (2 đường thẳng cùng vuông góc với 1 đường thẳng)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạg với ΔHAC
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: góc ADE=90 độ-góc ABD
góc AED=góc BEH=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADE=góc AED
=>AD=AE
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: góc AED=góc BEH=90 độ-góc DBC
góc ADE=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AED=góc ADE
=>AD=AE
a: Xet ΔABC vuông tại A và ΔHAC vuông tạiH có
góc ACB chung
=>ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
b: AE/HE=CA/CH
BD/AD=CB/CA
mà CA/CH=CB/CA
nên AE/HE=BD/AD
=>AE*AD=HE*BD
a)Xét tam giác ABC vuông tại A(gt),có:
AB^2+AC^2=BC^2(Đl pytago)
Thay số:36+64=BC^2
=>BC= căn 100=10cm
Xét tam giác ABC có BD là phân giác góc ABC(gt),có:
AB/AC=AD/DC(Tính chất đường phân giác trong tam giác)
<=>AB/AB+AC=AD/AD+DC(Tính chất tỉ lệ thức)
Thay số:6/16=AD/8
<=>16AD=48
<=>AD=3cm
Vì D thuộc AC(gt)
=>AD+DC=AC
Thay số:3+DC=8
<=>DC=5cm
b) Xét tam giác ABC vuông tại A(gt),có:
SABC=(AB.AC)/2=24cm^2
Mà SABC=(AH.BC)/2
=>(AH.10)/2=24
<=>AH=24.2÷10=4,8cm
Xét tam giác ABC đồng dạng tam giác HAC có:
+Góc C chung
+Góc AHC=góc BAC=90 độ
=>tam giác ABC đồng dạng tam giác HAC(g.g)
=> AH/AB=CH/AC(Cặp cạnh tương ứng)
Thay số : 4,8/6=CH/8
=>CH=4,8.8÷6=6,4cm
c)
d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)).
suy ra \(AE\perp CD\).
Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).
Ta có:
\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))
suy ra \(\widehat{CAE}=\widehat{ABM}\)
mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)
do đó \(BM\perp AE\).
Từ đây ta có đpcm.
a: BA=BD
=>ΔBAD cân tại B
=>góc BAD=góc BDA
b: góc HAD+góc BDA=90 độ
góc CAD+góc BAD=90 độ
mà góc BAD=góc BDA
nên góc HAD=góc CAD
=>AD là phân giác của góc HAC
c: Xét ΔADH vuông tại H và ΔADK vuông tại K có
AD chung
góc HAD=góc KAD
=>ΔADH=ΔADK
=>AH=AK
bài giải nè !
a: BA=BD
=>ΔBAD cân tại B
=>góc BAD=góc BDA
b: góc HAD+góc BDA=90 độ
góc CAD+góc BAD=90 độ
mà góc BAD=góc BDA
nên góc HAD=góc CAD
=>AD là phân giác của góc HAC
c: Xét ΔADH vuông tại H và ΔADK vuông tại K có
AD chung
góc HAD=góc KAD
=>ΔADH=ΔADK
=>AH=AK
a) Xét tam giác AHD và tam giác CKD có:
AHD=CKD=90
\(D_1=D_2\) (2 góc đối đỉnh)
=> tam giác AHD đồng dạng tam giác CKD (g-g)
=> đpcm
b) Xét tam giác AHB và tam giác CKB có
AHB=BKC=90
ABD=DBC ( BD là tia phân giác ABC)
=> Tam giác AHB đồng dạng CKB (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)
góc BAE+góc CAE=90 độ
góc BEA+góc HAE=90 độ
mà góc HAE=góc CAE
nên góc BEA=góc BAE
=>BD vuông góc AE
Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>góc BED=90 độ
=>DE//AH