Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
ΔABC vuông cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=45^0\)
EH\(\perp\)BC tại H
=>EH\(\perp\)HB tại H
=>ΔEHB vuông tại H
Xét ΔHEB vuông tại H có \(\widehat{HBE}=45^0\)
nên ΔHEB vuông cân tại H
FG\(\perp\)BC tại G
=>FG\(\perp\)GC tại G
=>ΔFGC vuông tại G
Xét ΔFCG vuông tại G có \(\widehat{GCF}=45^0\)
nên ΔFCG vuông cân tại G
2: EH\(\perp\)BC
FG\(\perp\)BC
Do đó: EH//FG
EH=HB
HB=HG=GC
GF=GC
Do đó; EH=HB=GH=CG=GF
Xét tứ giác EHGF có
EH//FG
EH=FG
Do đó: EHFG là hình bình hành
Hình bình hành EHFG có \(\widehat{EHG}=90^0\)
nên EHFG là hình chữ nhật
Hình chữ nhật EHFG có GH=GF
nên EHFG là hình vuông
Mình ghét hình...với lại nó dài nữa! Ai làm cũng mỏi tay bạn à...
a)BD, CE vuông góc với AC,AB
=> H là trực tâm của tam giác ABC
=>AH là đường cao của tam giác ABC
=>AH vuông góc BC
b)ta có:góc EAC=gócDAB
góc ADB=góc AEC=90độ
=>tam giác ABD đồng dạng với tam giác ACE
Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
BA^2=HB*HC
=>HB(HB+10,8)=7,2^2
=>HB^2+10,8HB-7,2^2=0
=>HB=3,6cm
=>BC=14,4cm
\(AC=\sqrt{14.4^2-7.2^2}=\dfrac{36}{5}\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot\dfrac{36\sqrt{3}}{5}\cdot7.2\simeq44,89\left(cm^2\right)\)