K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2023

A C B H E F J I O

O là giao của AH và EF

\(AF\perp AB;HE\perp AB\) => AF//HE

\(AE\perp AC;HF\perp AC\) => AE//HF

=> AEHF là hình bình hành mà \(\widehat{A}=90^o\) => AEHF là HCN

\(\Rightarrow AH=EF\) (trong HCN hai đường chéo băng nhau)

\(OA=OH;OE=OF\) (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

=> OE=OH => tg OEH cân tại O

Vì AEHF là HCN nên

\(\widehat{EAF}=\widehat{EHF}=90^o\) => A và H cùng nhìn EF dưới 1 góc vuông => AEHF là tứ giác nội tiếp đường tròn tâm O bán kính EF

Xét tg vuông BEH có

IB=IH (gt) \(\Rightarrow IE=IB=IH=\dfrac{BH}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

=> tg IEH cân tại I \(\Rightarrow\widehat{IEH}=\widehat{IHE}\) (1)

tg OEH cân tại O (cmt) \(\Rightarrow\widehat{OEH}=\widehat{OHE}\) (2)

Mà \(\widehat{IHE}+\widehat{OHE}=\widehat{AHB}=90^o\) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{IEH}+\widehat{OEH}=\widehat{FEI}=90^o\)

\(\Rightarrow IE\perp EF\) mà EF là đường kính (O) => IE là tiếp tuyến đường tròn (O).

C/m tương tự ta cũng có \(JF\perp EF\) => JF cũng là tiếp tuyến với (O)

=> IE//JF (cùng vuông góc với EF)

 

góc AFH=góc AEH=góc FAE=90 độ

=>AEHF là hình chữ nhật

góc JFE=góc JFH+góc EFH

=góc JHF+góc EAH

=góc HBA+góc HAB=90 độ

=>JF là tiếp tuyến của (O)

góc IEF=góc IEH+góc FEH

=góc IHE+góc FAH

=góc HAC+góc HCA=90 độ

=>IE là tiếp tuyến của (O)

=>IE//FJ

3 tháng 7 2023

cảm ơn bạn rất nhiều ạaaa

5 tháng 11 2023

\({}\)

a) Vì \(\widehat{BEC}=\widehat{BFC}=90^o\) nên tứ giác BEFC nội tiếp đường tròn đường kính BC. Tương tự như thế, tứ giác AEDB nội tiếp đường tròn đường kính AB. Cũng có \(\widehat{AEH}=\widehat{AFH}=90^o\) nên tứ giác AEHF nội tiếp đường tròn đường kính AH.

Ta có \(\widehat{IEM}=\widehat{IEB}+\widehat{BEM}\) 

\(=\left(90^o-\widehat{IEA}\right)+\widehat{EBC}\)

\(=90^o-\widehat{EAD}+\widehat{EBD}=90^o\) (do \(\widehat{EBD}=\widehat{EAD}\))

Vậy \(IE\perp ME\)

b) Dễ thấy các điểm I, D, E, F, M, K cùng thuộc đường tròn đường kính IM. Gọi J là trung điểm AI thì I chính là tâm của đường tròn (AIK) nên (J) tiếp xúc với (I) tại A. Dẫn đến A nằm trên trục đẳng phương của (I) và (J)

 Mặt khác, ta có \(SK.SI=SE.SF\) nên \(P_{S/\left(I\right)}=P_{S/\left(J\right)}\) hay S nằm trên trục đẳng phương của (I) và (J). Suy ra AS là trục đẳng phương của (I) và (J). \(\Rightarrow\)\(AS\perp IJ\) hay AS//BC (đpcm).

c) Ta thấy tứ giác AKEP nội tiếp đường tròn AP

\(\Rightarrow\widehat{APB}=\widehat{MKE}=\widehat{MDE}=\widehat{BAC}\)

\(\Rightarrow\Delta BAE~\Delta BPA\left(g.g\right)\Rightarrow\widehat{BAP}=\widehat{BEA}=90^o\)

\(\Rightarrow\) AP//QH \(\left(\perp AB\right)\)

\(\Rightarrow\widehat{IAP}=\widehat{IHQ}\) (2 góc so le trong)

Từ đó dễ dàng chứng minh \(\Delta IAP=\Delta IHQ\left(g.c.g\right)\) \(\Rightarrow IP=IQ\) hay I là trung điểm PQ (đpcm)

7 tháng 9 2017

hinh tu ve

cm: aehf la hinh chu nhat vi co 4 goc vuong

suy ra af=eh

\(\Delta BEHdd\Delta BAC\)

\(\frac{EH}{AC}=\frac{BH}{AB}< =>\frac{EH}{BH}=\frac{AC}{AB}\)

tg_bac dd tg_ahc

\(\frac{AC}{AB}=\frac{CH}{AC}\)

suy ra

\(\frac{AF}{BH}=\frac{CH}{AC}\)(do af=eh)

\(\frac{AF}{CH}=\frac{BH}{AC}\)

7 tháng 9 2017

a. Qua C dung duong thang vuong AC tai C cat NH tai I. De thay tg vuong CAM = tg vuong ICN (AM=CN;goc ACM=goc CIN) =>IC=CA => ACIB la hinh vuong Goi J la trung diem IC. BJ giao NI tai ok De thay BJ // CM => ok la trung diem IH va BK vuong goc IN (Do CM vuong goc IN tai H) => BK vua la duong cao, vua la trung tuyen cua tg BHI =>tg BHIcan tai B =>BH=BI ma ACIB la hinh vuong => BH=BI=BA => ABH can tai B b. De thay tu giac MBIH noi tiep (B=H=ninety) =>goc BIM = goc BHM (cung chan BM) (a million) Mat khac vi HE vuong goc AB => HE // AC => goc EHM = goc ACM (goc dong vi) (2) Hon nua tg AMC = tg BMI => goc BIM = goc ACM (3) Tu (a million), (2), (3) => goc BHM = goc EHM => HM la phan giac goc BHE

1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cma. Tính AH,ACM số đo góc ABCB. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.ABC. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IFD. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF2. Cho tam giấc ABC nội...
Đọc tiếp

1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cm
a. Tính AH,ACM số đo góc ABC
B. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.AB
C. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IF
D. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF
2. Cho tam giấc ABC nội tiếp đường tròn (o) đườn kính BC. Vẽ dây AD của (o) vuông góc với đường kính BC tại H. Gọi M là trung điểm của cạnh AC.Từ M vẽ đường thẳng vuông góc với OC, đường thẳng này cắt OI tại N trên tia ON lấy điểm S sao cho N là trung điểm của cạnh OS
A. Chứng minh tam giác ABC vuông tại A và HA=HD
B. Chứng minh MN//SC và SC là tiếp tuyến của đường trong (O)
c. Gọi K là trung điểm của cạnh HC vẽ đương tròn đường lính AH cắt cạnh AK tại F chứng minh BH. HC= À. AK 
D. T rên tia đối của tia BA lấy điểm E sao hco B là trung điểm của cạnh AE chứng minh E,H,F thẳng hàng
GIÚP MÌNH VỚI!!!

1
18 tháng 12 2016

tớ ko biết

26 tháng 9 2018

A B C H E F O

a) \(\Delta\)ABC vuông tại A có trung tuyến AO nên ^OAC = ^OCA. Do ^OCA = ^BAH (Cùng phụ ^HAC)

Nên ^OAC = ^BAH = ^ AEF (Do tứ giác AEHF là hcn)

Mà ^AEF + ^AFE = 900 => ^OAC + ^AFE = 900 => OA vuông góc EF (đpcm).

b) Biến đổi tương đương:

\(BE\sqrt{CH}+CF\sqrt{BH}=AH\sqrt{BC}\)

\(\Leftrightarrow BE\sqrt{BC.CH}+CF\sqrt{BC.BH}=AB.BC\)(Nhân mỗi vế với \(\sqrt{BC}\))

\(\Leftrightarrow BE\sqrt{AC^2}+CF\sqrt{AB^2}=AB.BC\) (Hệ thức lương)

\(\Leftrightarrow BE.AC+CF.AB=AB.BC\)

\(\Leftrightarrow BH.AH+CH.AH=AB.BC\)(Vì \(\Delta\)EBH ~ \(\Delta\)HAC; \(\Delta\)FHC ~ \(\Delta\)HBA)

\(\Leftrightarrow AH\left(BH+CH\right)=AB.BC\)

\(\Leftrightarrow AH.BC=AB.AC\) (luôn đúng theo hệ thức lượng)

Vậy có ĐPCM.