Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác EAD và tam giác EDC có
AD= CD( vì D là trung điểm của AC)
góc ADE =góc EDC = 90
ED cạnh chung
=>. tam giác ADE = tam giác CDE(c.g.c)
=> AE=CE (cạnh tương ứng) và góc EAD= góc ECD ( góc tương ứng)
=> tam giác EAC là tam giác cân
CM: ABE đều
a, Xét tam giác AED và tam giác CED có :
cạnh ED chung
góc ADE = góc CDE = 90độ
AD = CD ( vì D là trung điểm cạnh AC )
Do đó : tam giác AED = tam giác CED ( c.g.c )
=> AE = CE ( cạnh tương ứng )
Vậy tam giác AEC cân tại E
b, Xét tam giác ABC có góc A = 90độ nên :
góc B + góc C = 90độ
mà góc C = góc EAC ( vì tam giác AEC cân theo câu a )
=> góc B + góc EAC = 90độ
Ta có : góc A = góc BAE + góc EAC = 90độ
=> góc B = góc BAE ( vì cùng phụ với góc EAC )
=> tam giác ABE cân tại E
=> AE = BE ( * )
mà AE = CE ( theo câu a )
=> BE = CE và điểm E nằm trên cạnh BC
=> E là trung điểm của BC
=> BE = CE = \(\frac{BC}{2}\) (1)
Theo bài cho : 2AB = BC
=> AB = \(\frac{BC}{2}\) (2)
Từ (1) và (2) suy ra : AB = BE và BE = AE ( theo ( * ) )
=> AB = BE = AE
Vậy tam giác ABE đều .
Học tốt
Gọi M là trung điểm của BC
a) Xét 2 tam giác vuông : \(\Delta\)AED và \(\Delta\)CED có :
\(\hept{\begin{cases}AD=CD\left(gt\right)\\\widehat{EAD}=\widehat{EDC}\left(=90^{\text{o}}\right)\\ED\text{ chung}\end{cases}}\Rightarrow\Delta AED=\Delta CED\left(c.g.c\right)\)
=> AE = EC (cạnh tương ứng)
=> \(\Delta\)AEC cân tại E
b) Vì trong 1 tam giác vuông trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền
=> AM = 1/2 BC
=> AM = BM
Lại có BM = AB
=> AB = AM = BM
=> TAM GIÁC ABE đều
Hình (tự vẽ)
a) ΔABE cân
Xét hai tam giác vuông ABH và EBH có:
\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)
HB là cạnh chung.
Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)
⇒ BA = BE (2 cạnh tương ứng)
⇒ ΔABE cân tại B.
b) ΔABE đều
Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.
c) AED cân
Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)
Xét hai tam giác vuông ADH và EDH có:
AH = EH (cmt)
HD: cạnh chung
Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)
⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)
⇒ ΔAED cân tại D
d) ΔABF cân
Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong) (1)
Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)
Thay: 60o + ABF = 180o
⇒ ABF = 180o - 60o = 120o
Xét ΔABF, ta có:
\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)
Thay: 120o + BFA + 30o = 180o
⇒ BFA = 180 - 120 - 30 = 30 (2)
Từ (1) và (2) suy ra: ΔABF cân tại B.
1: Xét ΔABE có
BO là đường cao
BO là đường phân giác
Do đó: ΔABE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
2: Xét ΔEBD và ΔABD có
BA=BE
\(\widehat{EBD}=\widehat{ABD}\)
BD chung
Do đó: ΔEBD=ΔABD
Suy ra: DE=DA
hay ΔDEA cân tại D(1)
\(\widehat{CEA}=180^0-60^0=120^0\)
\(\widehat{C}=180^0-105^0-60^0=15^0\)
=>\(\widehat{DAE}=180^0-120^0-15^0=45^0\)(2)
Từ (1) và (2) suy ra ΔDEA vuông cân tại D
a, xét tam giác AMD và tam giác AND có : AD chung
^MAD = ^NAD do AD là pg của ^BAC (gt)
^AMD = ^AND = 90
=> tam giác AMD = tam giác AND (ch-gn)
b, xét tam giác BMD vuông tại M => ^B + ^MDB = 90 (đl)
^B = 30 (gt)
=> ^MDB = 60
tương tự tính đượng ^NDC = 60
có : ^MDB + ^NDC + ^MDN = 180
=> ^MDN = 60
c, AB = AC do tam giác ABC cân tại A (gt)
AM = AN do tam giác AMD = tam giác AND (Câu a)
AB = AM + BM
AC = AN + NC
=> BM = NC
xét tam giác DMB và tam giác DNC có : ^B = ^C
^DMB = ^DNC = 90
=> tam giác DMB = tam giác DNC (cgv-gnk)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A