Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py-ta-go vào tam giác ABC ta có:
\(AB^2+AC^2=BC^2\)
\(18^2+24^2=BC^2\)
\(324+576=BC^2\)
\(BC^2=900=30^2\)
\(\Rightarrow BC=30\left(cm\right)\)
chu vi tam giác ABC là 30+18+24=72(cm)
vậy ...
Hình em tự vẽ ra nhé.
Áp dụng đl pytago vào tam giác vuông ABC có:
AB^2 + AC^2 = BC^2
-- > BC = 5 (cm)
Vì tam giác ABC vuông tại A, AM là đường trung tuyến ứng với cạnh huyền BC nên ta có:
\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5\left(cm\right)\)
Vì G là trọng tâm tâm giác ABC, ta lại có:
\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.2,5=\dfrac{5}{3}\left(cm\right)\)
Lời giải:
$AD$ là đường trung tuyến ứng với cạnh huyền $BC$
$\Rightarrow AD=\frac{BC}{2}$
Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{18^2+24^2}=30$ (cm)
$\Rightarrow AD=30:2=15$ (cm)
Xét tam giác ABC:
BC=EF=5cm
=> Chu vi của tam giác ABC là:
AB+AC+BC=3+4+5=12(cm)
Xét tam giác DEF:
AB=DE=3cm
AC=DF=4cm
=> Chu vi tam giác DEF là:
DE+DF+EF=3+4+5=12
Vậy chu vi tam giác ABC: 12(cm)
Chu vi tam giác DEF:12(cm)
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=30cm\)
Chu vi tam giác ABC là
AB + AC + BC = 72 cm