Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A.
a) Tính AB biết BC= 10cm, AC= 8cm.
b) Tính AC biết BC= 12cm, AB= 10cm.
a) Ap dụng định lý Pitago \(\Delta ABC\) cân tại A
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB^2=BC^2-AC^2\)
\(\Rightarrow AB^2=10^2-8^2\)
\(\Rightarrow AB=\sqrt{10-8^2}=6\left(cm\right)\)
b) ADCT : \(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{12^2-10^2}=2\sqrt{11}\left(cm\right)\)
1) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
2) Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
a.Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)\(\Rightarrow5^2+12^2=BC^2\Rightarrow169=BC^2\Rightarrow BC=13\left(cm\right)\)
b. Tam giác MNP là tam giác vuông vì \(6^2+8^2=10^2\)
Chúc bạn học tốt!
Áp dụng định lí Pytago cho tam giác ABC vuông tại A ta có :
\(AB^2+AC^2=BC^2\Rightarrow AB^2=BC^2-AC^2=100-64=36\)
\(\Rightarrow AB=\sqrt{36}=6\)cm
Vậy AB = 6cm
6
Áo dụng định lí Py-to-go ta có
AC2 + AB2 = BC2
=> AB2 = BC2 - AC2
hay AB2 = 102 -82
AB2 = 100 - 64
AB = 36
AB = 6 cm