K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{AB}{AC}=\dfrac{4}{5}\)

\(\Leftrightarrow AC=\dfrac{5\cdot AB}{4}=\dfrac{5\cdot6}{4}=7.5\left(cm\right)\)

Xét ΔABC vuông tại A có

\(AB^2+AC^2=BC^2\)

hay \(BC=\dfrac{3\sqrt{41}}{2}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{24\sqrt{41}}{41}\left(cm\right)\\CH=\dfrac{75\sqrt{41}}{82}\left(cm\right)\end{matrix}\right.\)

21 tháng 7 2021

Gọi 2 cạnh góc vuông là `AB,AC`, cạnh huyền là `BC`

Theo đề: `(AB)/(AC)=3/4=(3x)/(4x) (x >0)`

Áp dụng định lí Pytago:

`BC^2=AB^2+AC^2`

`<=>125^2=9x^2+16x^2`

`=>x=25`

`=> AB=75 ; AC=100`

Có: `AB^2=BH.BC=>BH=45`

`=>CH=BC-BH=80`.

30 tháng 7 2018

Tam giác ABC vuông tại A; BC = 26;  AB/AC = 5/12; đường cao AH

B A C H

\(\frac{AB}{AC}=\frac{5}{12}\) \(\Rightarrow\)\(\frac{AB}{5}=\frac{AC}{12}=k\)=>  \(AB=5k;\)\(AC=12k\)  (K > 0)

Áp dụng Pytago ta có:

AB2 + AC2 = BC2

<=>  25K2 + 144K2 = 676

<=> 169K2 = 676

<=> K2 = 4

<=> K =2

=> AB = 5.2 = 10

    AC = 12.2 = 24

Áp dụng hệ thức lượng ta có:

AB2 = BH.BC

=> BH = AB2/BC = 50/13

=> CH = BC - BH = 288/13

11 tháng 7 2021

undefined

6 tháng 4 2021

ko biết làm giúp bạn này với

Tỉ số độ hai cạnh góc vuông là 5/6

=>Tỉ số giữa hai hình chiếu tương ứng của hai cạnh góc vuông trên cạnh huyền là (5/6)^2=25/36

Độ dài hình chiếu thứ nhất là:

122*25/61=50(cm)

Độ dài hình chiếu thứ hai là:

122-50=72(cm)

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Lời giải:

Gọi độ dài 2 cạnh góc vuông của tam giác là $5a$ và $6a$ (với $a>0$)

Áp dụng định lý Pitago:

$(5a)^2+(6a)^2=122^2$

$\Leftrightarrow 61a^2=14884$

$\Rightarrow a^2=244$

Độ dài hình chiếu gọi là $d$. Theo hệ thức lượng trong tam giác:

$\frac{1}{d^2}=\frac{1}{(5a)^2}+\frac{1}{(6a)^2}$

$=\frac{61}{900a^2}=\frac{61}{900.244}=\frac{1}{3600}$

$\Rightarrow d^2=3600=60^2$

$\Rightarrow d=60$ (cm)

3 tháng 9 2020

a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC

Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)

Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\) 

b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé