K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

A.

I là trung điểm của AB

I là trung điểm của MN (M đối xứng N qua I)

=> AMBN là hình bình hành

mà AM = MB (AM là đường trung tuyến của tam giác ABC vuông tại A)

=> AMBN là hình thoi

B.

Tam giác ABC vuông tại A có:

BC2 = AB2 + AC(định lý Pytago)

= 122 + 162

= 144 + 256

= 400 (cm)

BC = √400400 = 20 (cm)

mà AM = 1212BC = 20 : 2 = 10 (cm) (AM là đường trung tuyến của tam giác ABC vuông tại A)

AN = MB (AMBN là hình thoi)

mà MB = MC (M là trung điểm của BC)

=> AN = MC

mà AN // MC (AMBN là hình thoi)

=> ACMN là hình bình hành

=> MN = AC

mà AC = 16 (cm)

=> MN = 16 (cm)

23 tháng 12 2016

a)

I là trung điểm của AB

I là trung điểm của MN (M đối xứng N qua I)

=> AMBN là hình bình hành

mà AM = MB (AM là đường trung tuyến của tam giác ABC vuông tại A)

=> AMBN là hình thoi

b)

Tam giác ABC vuông tại A có:

BC2 = AB2 + AC2 (định lý Pytago)

= 122 + 162

= 144 + 256

= 400 (cm)

BC = \(\sqrt{400}\) = 20 (cm)

mà AM = \(\frac{1}{2}\)BC = 20 : 2 = 10 (cm) (AM là đường trung tuyến của tam giác ABC vuông tại A)

AN = MB (AMBN là hình thoi)

mà MB = MC (M là trung điểm của BC)

=> AN = MC

mà AN // MC (AMBN là hình thoi)

=> ACMN là hình bình hành

=> MN = AC

mà AC = 16 (cm)

=> MN = 16 (cm)

20 tháng 12 2015

a) MI là đường TB của \(\Delta\)ABC => MI //BC => MI _|_ AB tại trung điểm I của AB ; Mà I là trung điểm của MN ( M dx N qua I)

=> tứ giác AMBN là hình thoi ( Có 2 dg chéo _|_ tại TĐ ..)

b) Pi ta go \(\Delta\) ABC => BC =20 

trung tuyến AM = BC/2 = 20/2 =10

=> cạnh hình thoi = AM =10

IM = AC/2  ( t/c đường TB)

=> MN = 2IM =2.AC/2 =AC = 16

Pi ta go \(\Delta\)AIM => IA2 = AM2 - IM2 =102 - 82 = 62

=> IA =6 => AB =2IA =2.6 =12

16 tháng 12 2021

a: Xét tứ giác ANMC có

MN//AC

MN=AC

Do đó: ANMC là hình bình hành

29 tháng 12 2018

a)tứ giác AMBN có

I là trung điểm AB (gt)

I là trung điểm NM (N đx M qua I)

=> AMBN là HBH (vì là tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)

có I là trung điểm AB (gt)

M là TĐiểm BC (AM là đường trung tuyến)

=> IM là đường trung bình tgiasc ABC (đnghĩa)

=> IM // AC IM = AC /2 (t/c đường trung bình)

IM // AC => IM vuộng AB (AC vuông AB )

hay NM vuông AB

HBH ABCD có 2 đường chéo vuông vs nhau=> ABCD là Hthoi (...)

b) có IM = AC/2 (cmcaau a).

=> IM = 6/2=3 (cm)

có I là Tđiểm NM (N đx M qua I)

=> NM = IM .2=6 (cm)

S hthoi AMBN = 1/2.6.4=12 (cm2 )

c) tam giác vuông ABC cần đk cân tại A để AMBN là Hvuông

26 tháng 1 2022

a) AM là trung tuyến (gt). => M là trung điểm của BC.

=> BM = MC =  \(\dfrac{1}{2}\) BC.

Xét tứ giác AMBN:

I là trung điểm của AB (gt).

I là trung điểm của NM (N là điểm đối xứng với M qua I).

=> Tứ giác AMBN là hình bình hành (dhnb). 

=> AN = BM và AN // BM (Tính chất hình bình hành).

Mà BM = MC (cmt).

=> AN = MC.

Xét tứ giác ANMC:

AN = MC (cmt).

AN // MC (AN // BM).

=> Tứ giác ANMC là hình bình hành (dhnb).

b) Xét tam giác ABC vuông tại A: 

AM là trung tuyến (gt).

=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).

Mà BM = MC = \(\dfrac{1}{2}\) BC (cmt).

=> AM = BM = MC = \(\dfrac{1}{2}\) BC.

Xét hình bình hành AMBN: AM = BM (cmt).

=> Tứ giác AMBN là hình thoi (dhnb).

c) Tứ giác ANMC là hình bình hành (cmt).

=> NM = AC (Tính chất hình bình hành).

Mà AC = 6 cm (gt).

=> NM = AC = 6 cm.

\(S_{AMBN}=\dfrac{1}{2}.AB.NM=\dfrac{1}{2}.4.6=12\left(cm^2\right).\)

d) Tứ giác AMBN là hình vuông (gt).

=> \(\widehat{AMB}=90^o\) (Tính chất hình vuông).

=> \(AM\perp BC.\)

Xét tam giác ABC vuông tại A:

AM là trung tuyến (gt).

AM là đường cao \(\left(AM\perp BC\right).\)

=> Tam giác vuông ABC vuông cân tại A.