Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có :
^C = 450 ( t/c tam giác vuông cân : mỗi góc nhọn đều bằng 450 ) (*)
Lại có : Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng ấy tại trung điểm của nó
Mà : ^BDH = 900 => ^HDA + ^BDH = ^DBA => ^HDA = ^DBA - ^BDH = 1800 - 900 = 900
Suy ra : ^ADE = ^HDE = ^HDA/2 = 900/2 = 450 (**)
tỪ (*); (**) TA CÓ ĐPCM
a:
Sửa đề: Là hình chiếu của H trên AB,AC
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MC
=>\(\widehat{MAC}=\widehat{MCA}\)
Ta có: ADHE là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{HAD}\right)\)
nên \(\widehat{AED}=\widehat{ABC}\)
\(\widehat{AED}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM\(\perp\)DE
c: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Ta có: ADHE là hình chữ nhật
=>AH=DE
mà AH=4,8cm
nên DE=4,8cm
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH
a, Dễ thấy ADHE là hcn nên \(AH=DE\)
Mà AH là hình chiếu từ A tới BC nên \(AH\le AM\)
Do đó \(DE\le AM\)
Mà AM là tt ứng cạnh huyền BC nên \(AM=\dfrac{1}{2}BC\)
Vậy \(DE\le\dfrac{1}{2}BC\)