Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\approx\tan37^0\\ \Leftrightarrow\widehat{C}\approx37^0\)
a: BC=căn 6^2+8^2=10cm
BH=AB^2/BC=3,6cm
CH=10-3,6=6,4cm
sin ABC=AC/BC=4/5
=>góc ABC=53 độ
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
=>AE/AC=AF/AB
=>ΔAEF đồng dạng với ΔACB
c: góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
góc KAC+góc AFE
=góc AHE+góc KCA
=góc ABC+góc ACB=90 độ
=>AK vuông góc EF
2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC
nên \(AD\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)
2: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
Tham khảo tại đây nha:
https://hoc24.vn/hoi-dap/question/887221.html
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
=>AB^2=3,6*10=36
=>AB=6cm
Xét ΔABC vuông tại A có
sin ACB=AB/BC=3/5
=>góc ACB=37 độ
b: ΔABM vuông tại A có AK là đường cao
nên BK*BM=BA^2
ΔABC vuông tại A có AH là đường cao
nên BH*BC=BA^2
=>BK*BM=BH*BC
=>BK/BC=BH/BM
=>ΔBKH đồng dạng với ΔBCM
Xét tam giác ABC vuông tại A
tanC = AB/AC \(\Rightarrow AC=\dfrac{AB}{tanC}=\dfrac{70}{tan35^0}\approx99,97m\)