Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H có HE là đường cao
nên AE*AB=AH^2
b: Xét ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
c: AE*AB=AF*AC
=>AE/AC=AF/AB
=>ΔAEF đồng dạng với ΔACB
d: góc MAC+góc AFE
=góc MCA+góc AHE
=góc BCA+góc ABC=90 độ
=>AM vuông góc EF
mình viết nhầm câu a là tam giác ABC đồng dạng với tam giác HBA ạ chứ không phải HCA
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng vơi ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA
=>BA^2=BH*BC
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: Xét ΔCAM có
CK,AH là đường cao
CK cắt AH tại I
=>I là trực tâm
=>MI vuông góc AC
=>MI//AB
Xét ΔHAB có
M là trung điểm của HB
MI//AB
=>I là trung điểm của HA
a, Xét tam giác ABH và tam giác AHE ta có :
^BHA = ^EHA = 900
^A _ chung
Vậy tam giác ABH ~ tam giác AHE ( g.g )
\(\Rightarrow\frac{AH}{AE}=\frac{AB}{AH}\)( tỉ số đồng dạng ) \(\Rightarrow AH^2=AB.AE\)