Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo!
a) ˆAID=ˆABEAID^=ABE^(cùng phụ với góc AEB)
Δ∆AID = Δ∆ABE (g-c-g), ta có AI = AB
=> AI = AC => I là trung điểm của CI
b) AM ⊥⊥ BE; IN ⊥⊥ BE => AM // IN
Gọi giao điểm của AM với đường kẻ qua N và song song với AC là F.
Ta có ˆIAN=ˆFNA(slt)IAN^=FNA^(slt); ˆANI=ˆNAF(slt)ANI^=NAF^(slt)
=> Δ∆AIN = Δ∆NAF (g-c-g)
=> NF = AI = AC
Mà ˆCAM=ˆMFN(slt);ˆACM=ˆMNF(slt)CAM^=MFN^(slt);ACM^=MNF^(slt)
=> Δ∆MAC = Δ∆MNF (g-c-g) => CM = MN
4,
a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A.
AD = AE (gt)
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc)
=> tgiácACD = tgiácAME (g.c.g)
b/ ta có: AG//EH (cùng vuông góc với CD)
=> AG // IH
mà gt => AI // GH
vậy AGHI là hình bình hành
=>AG = IH.
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME
=> AM = AC = AB
=> A là trung điểm BM, mà AI // BC
=> AI là đường trung bình của tgiác MBH
=> I là trung điểm của MH.
vậy: IM = IH = AG
có: AM = AB
góc BAG = góc AMI (so le trong)
=> tgiác AGB = tgiác MIA ( c.g.c)
c/ có AG//MH, A là trung điểm BM
=> AG là đường trung bình của tgiácBMH
=> G là trung điểm BH
hay BG = GH.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Xét ΔADF và ΔCDE có
DA=DC
\(\widehat{ADF}=\widehat{CDE}\)
DF=DE
Do đó: ΔADF=ΔCDE
Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do dó: AECF là hình bình hành
Suy ra: AF//EC