K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2023

loading...  

a) Xét hai tam giác vuông: ∆DAB và ∆DMB có:

DB chung

∠ABD = ∠MBD (do BD là tia phân giác của ∠B)

⇒ ∆DAB = ∆DMB (cạnh huyền - góc nhọn)

b) Do ∆DAB = ∆DMB (cmt)

⇒ DA = DM (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AM (1)

Do ∆DAB = ∆DMB (cmt)

⇒ BA = BM (hai cạnh tương ứng)

⇒ B nằm trên đường trung trực của AM (2)

Từ (1) và (2) ⇒ BD là đường trung trực của AM

c) ∆BAM có BA = BM (cmt)

⇒ ∆BAM cân tại B

∆DAM có DA = DM (cmt)

⇒ ∆DAM cân tại D

d) Do D ∈ AC

⇒ AD < AC

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

b: AD=MD

mà DM<DC

nên AD<DC

c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có

DA=DM

góc ADK=góc MDC

=>ΔDAK=ΔDMC

=>DK=DC

=>ΔDKC cân tại D

ΔBKC cân tại B

mà BN là phângíac

nên BN vuông góc KC

21 tháng 5 2023

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

b: AD=MD

mà DM<DC

nên AD<DC

c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có

DA=DM

góc ADK=góc MDC

=>ΔDAK=ΔDMC

=>DK=DC

=>ΔDKC cân tại D

ΔBKC cân tại B

mà BN là phângíac

nên BN vuông góc KC

 

 

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

b: ΔBAD=ΔBMD

=>BA=BM và DA=DM

=>BD là trung trực của AM

c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có

DA=DM

góc ADK=góc MDC

=>ΔDAK=ΔDMC

=>DK=DC

=>ΔDKC cân tại D

Xét ΔBKC có

KM,CA là đường cao

KM cắt CA tại D

=>D là trực tâm

=>BD vuông góc CK tại N

 

5 tháng 5 2023

a) Xét hai tam giác vuông: \(\Delta DAB;\Delta DMB\) có:

\(DB\) chung

\(\widehat{DBA}=\widehat{DMA}\) (\(BD\) là tia phân giác của \(\widehat{B}\))

\(\Rightarrow\Delta DAB=\Delta DMB\) (cạnh huyền - góc nhọn)

5 tháng 5 2023

b) Do ∆DAB = ∆DMB (cmt)

⇒ DA = DM (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AM (1)

Do ∆DAB = ∆DMB (cmt)

⇒ BA = BM (hai cạnh tương ứng)

⇒ B nằm trên đường trung trực của AM (2)

Từ (1) và (2) ⇒ BD là đường trung trực của AM

Hay BD ⊥ AM

c) Xét hai tam giác vuông:

∆DMC và ∆DAK có:

DM = DA (cmt)

∠MDC = ∠ADK (đối đỉnh)

∆DMC = ∆DAK (cạnh góc vuông - góc nhọn kề)

⇒ MC = AK (hai cạnh tương ứng)

Lại có: BM = BA (cmt)

⇒ BM + MC = BA + AK

⇒ BC = BK

∆BCK cân tại B

Mà BD là tia phân giác của ∠B

⇒ BD cũng là đường cao của ∆BCK

⇒ BD ⊥ KC

Mà BD ⊥ AM (cmt)

⇒ AM // KC

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

b: AD=DM

DM<DC

=>AD<DC

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

b: ΔBAD=ΔBMD

=>BA=BM và DA=DM

=>BD là trung trực của AM

c: Xét ΔBKC có

KM,CA là đường cao

KM cắt CA tại D

=>D là trực tâm

=>BD vuông góc kC tại N

Bạn tự vẽ hình nha =)

a) Xét tam giác DAB và tam giác DMB có:

 Góc DAB= Góc DMB (=90 độ)

 Chung cạnh BD

=> Góc DAB= Góc DMB

b) Vì 

Góc DAB= Góc DMB=> BA=BM,DA=DM

  => B,D trung trực AM

=> DB là  trung trực AM

c.Ta có: DM⊥BC=>KD⊥BC

               CA⊥AB=>CD⊥BK

 

=>D là trực tâm tam giác BCK

→BD⊥CK

→BN⊥KC

 

Xét ΔBMK,ΔBAC ta có:

Chung B

=>BM=BA

ˆBMK=ˆBAC(=90độ)

=>ΔBMK=ΔBAC(c.g.c)

=>BK=BC

=>ΔKBC cân tại B

 

10 tháng 5 2023

thanks bạn nhiều

a; Xét ΔDAB vuông tại A và ΔDMB vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔDAB=ΔDMB

b: D nằm giữa A và C

=>AD<AC
c: Xét ΔBKC có

CA,KM là đường cao

CA cắt KM tại D

=>D là trực tâm

=>BD vuông góc KC tại N

Xet ΔBKC có

BN vừa là phân giác, vùa là đường cao

=>ΔBKC cân tại B

a: Xét ΔMAB và ΔMCD có

MA=MC

MB=MD

AB=CD

=>ΔMAB=ΔMCD

b: Xét ΔMAC có MA=MC nên ΔMAC cân tại M

ΔMAB=ΔMCD

=>góc MAB=góc MCD

=>góc MAB=góc MAC

=>AM là phân giác của góc BAC

3 tháng 4 2022

25cm

3 tháng 4 2022

LODON