Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác MBH nội tiếp đường tròn tâm I đường kính BH
=> Tam giác MHB vuông tại M => MH vg AB => AMH = 90 độ
Tam giác HNC nội tiếp đường tròn tâm O đk HC => Tam giác NHC vuông tại N
=> ANH = 90 độ
TG NAMH có ANH = HMA = MAN = 90 độ
=> NAMH là HCN . Gọi MN giao AH tại O => OM = OH ; ON = OH ( tính chất HCN)
Tam giác BMH vuông tại M có MI là trung tuyến => MI = IH = 1/2 BH => Tam giác IMH cân tại I
=> IMH = IHM (1)
Tam giác OMH có OM = OH => tam giác OMH cân tại O => OMH = OHM (2)
Từ (1) và (2) => IMH + OMH = IHM + OHM => OMI = IHO = 90 độ
=> MN vg IM
=> MN là tiếp tuyến đường tròn tâm I (*)
CM tương tự MN vg NK => MN là tiếp tuyến đường tròn tâm K (**)
Từ (*) và(**) => MN là tiếp tuyến chung của đường tròn tâm I và K
a:
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\)(cm)
=>AH=6*8/10=4,8(cm)
=>MN=4,8(cm)
c: góc IMN=góc IMH+góc NMH
=góc IHM+góc NAH
=góc HAC+góc HCA=90 độ
=>MN là tiếp tuyến của (I)
góc KNM=góc KNH+góc MNH
=góc KHN+góc MAH
=góc BAH+góc HBA=90 độ
=>MN là tiếp tuyến của (K)
a: O là trung điểm của BC
b: Xét \(\left(\dfrac{BH}{2}\right)\) có
ΔBDH là tam giác nội tiếp
BH là đường kính
Do đó: ΔBDH vuông tại D
Xét \(\left(\dfrac{CH}{2}\right)\)có
ΔCHE nội tiếp đường tròn
CH là đường kính
Do đó: ΔCHE vuông tại E
Xét tứ giác ADHE có
\(\widehat{AEH}=\widehat{ADH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
a: Xét (I) có
ΔHDB nội tiếp
HB là đường kính
Do đó: ΔHDB vuông tại D
=>HD\(\perp\)AB
Xét (K) có
ΔCEH nội tiếp
CH là đường kính
Do đó: ΔCEH vuông tại E
=>HE\(\perp\)AC
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: Xét ΔHAB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔHAC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
c: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>AC=4(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot5=3\cdot4=12\)
=>AH=2,4(cm)
ADHE là hình chữ nhật
=>AH=DE=2,4(cm)
\(\widehat{EDI}=\widehat{EDH}+\widehat{IDH}\)
\(=\widehat{HAC}+\widehat{IHD}\)
\(=\widehat{HAC}+\widehat{HCA}=90^0\)
=>ED\(\perp\)DI
\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)
\(=\widehat{KHE}+\widehat{HAB}\)
\(=\widehat{HAB}+\widehat{HBA}=90^0\)
=>EK\(\perp\)ED
mà ED\(\perp\)DI
nên EK//DI
Xét tứ giác EDIK có
EK//DI
ED\(\perp\)EK
Do đó: EDIK là hình thang vuông
\(DI+EK=\dfrac{1}{2}HB+\dfrac{1}{2}HC=\dfrac{1}{2}\cdot\left(HB+HC\right)=2,5\left(cm\right)\)
\(S_{EDIK}=\dfrac{1}{2}\cdot ED\cdot\left(EK+DI\right)\)
\(=\dfrac{1}{2}\cdot2,4\cdot2,5=3\left(cm^2\right)\)