Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, áp dụng định lí py-ta-go ta có:
\(BC^2\)=\(AB^2+AC^2\)
=> \(AC^2=BC^2-AB^2\)
=> \(AC^2=100-36\)
=> \(AC^2=64\)cm => AC=8 cm
vậy AC=8 cm
vì BC>AC>AB(10cm>8cm>6cm)
=> \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)(góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm
b, Xét 2 t.giác vuông BCA và DCA có:
AB=AD(gt)
AC cạnh chung
=> \(\Delta\)BCA=\(\Delta\)DCA(cạnh góc vuông-cạnh góc vuông)
=> BC=DC(2 cạnh tương ứng)
=>t.giác BCD cân tại C (đpcm)
c, xét t.giác BCD : A là trung điểm BD, K là trung điểm của BC, AC và DK cắt nhau tại M
=> M là trọng tâm của \(\Delta\)BCD => MC=\(\frac{2}{3}\)AC(tính chất 3 đường trung tuyến)
=> MC=\(\frac{2}{3}\).8\(\approx\)5,3 cm
vậy MC\(\approx\)5,3 cm
a: Xét ΔCBD có
CA vừa là đường cao, vừa là đường trung tuyến
nên ΔCBD cân tại C
c: Gọi N là trung điểm của AC
=>QN là đường trung trực của AC
=>QN//AD
Xét ΔCAD có
N là trung điểm của AC
NQ//AD
=>Q là trung điểm của CD
Xét ΔCDB có
CA,DK là trung tuyến
CA cắt DK tại M
=>M là trọng tâm
mà BQ là trung tuyến
nên B,M,Q thẳng hàng
a: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
b: Xét ΔCDB có
CA,DK là trung tuyến
CA cắt DK tại M
=>M là trọng tâm
=>AM=1/2MC
c: Gọi giao của d với AC là E
d là trung trực của AE
=>QE vuông góc AC tại E và E là trung điểm của AC
Xét ΔCAD có
E là trung điểm của CA
EQ//DA
=>Q là trung điểm của CD
Xét ΔCBD có
M là trọng tâm
BQ là đường trung tuyến
Do đó; B,Q,M thẳng hàng
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
hay AC=12(cm)
Vậy: AC=12cm