K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

            \(BC^2\)=\(AB^2+AC^2\)

=>    \(AC^2=BC^2-AB^2\)

=>    \(AC^2=100-36\)

=>    \(AC^2=64\)cm => AC=8 cm

vậy AC=8 cm

vì BC>AC>AB(10cm>8cm>6cm)

=> \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)(góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm

b, Xét 2 t.giác vuông BCA và DCA có:

               AB=AD(gt)

              AC cạnh chung

=> \(\Delta\)BCA=\(\Delta\)DCA(cạnh góc vuông-cạnh góc vuông)

=> BC=DC(2 cạnh tương ứng)

=>t.giác BCD cân tại C (đpcm)

19 tháng 4 2019

c, xét t.giác BCD : A là trung điểm BD, K là trung điểm của BC, AC và DK cắt nhau tại M

=> M là trọng tâm của \(\Delta\)BCD => MC=\(\frac{2}{3}\)AC(tính chất 3 đường trung tuyến)

=> MC=\(\frac{2}{3}\).8\(\approx\)5,3 cm

vậy MC\(\approx\)5,3 cm

a: Xét ΔCBD có
CA vừa là đường cao, vừa là đường trung tuyến

nên ΔCBD cân tại C

c: Gọi N là trung điểm của AC

=>QN là đường trung trực của AC

=>QN//AD

Xét ΔCAD có

N là trung điểm của AC

NQ//AD

=>Q là trung điểm của CD

Xét ΔCDB có

CA,DK là trung tuyến
CA cắt DK tại M

=>M là trọng tâm

mà BQ là trung tuyến

nên B,M,Q thẳng hàng

a: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

b: Xét ΔCDB có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>AM=1/2MC

c: Gọi giao của d với AC là E

d là trung trực của AE
=>QE vuông góc AC tại E và E là trung điểm của AC

Xét ΔCAD có

E là trung điểm của CA

EQ//DA

=>Q là trung điểm của CD

Xét ΔCBD có

M là trọng tâm

BQ là đường trung tuyến

Do đó; B,Q,M thẳng hàng

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)

hay AC=12(cm)

Vậy: AC=12cm

20 tháng 3 2018

xem trên mạng

26 tháng 4 2021

Chưa chắc đã có mà xem