K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

b: ΔBAD=ΔBMD

=>BA=BM và DA=DM

=>BD là trung trực của AM

c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có

DA=DM

góc ADK=góc MDC

=>ΔDAK=ΔDMC

=>DK=DC

=>ΔDKC cân tại D

Xét ΔBKC có

KM,CA là đường cao

KM cắt CA tại D

=>D là trực tâm

=>BD vuông góc CK tại N

 

5 tháng 5 2023

a) Xét hai tam giác vuông: \(\Delta DAB;\Delta DMB\) có:

\(DB\) chung

\(\widehat{DBA}=\widehat{DMA}\) (\(BD\) là tia phân giác của \(\widehat{B}\))

\(\Rightarrow\Delta DAB=\Delta DMB\) (cạnh huyền - góc nhọn)

5 tháng 5 2023

b) Do ∆DAB = ∆DMB (cmt)

⇒ DA = DM (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AM (1)

Do ∆DAB = ∆DMB (cmt)

⇒ BA = BM (hai cạnh tương ứng)

⇒ B nằm trên đường trung trực của AM (2)

Từ (1) và (2) ⇒ BD là đường trung trực của AM

Hay BD ⊥ AM

c) Xét hai tam giác vuông:

∆DMC và ∆DAK có:

DM = DA (cmt)

∠MDC = ∠ADK (đối đỉnh)

∆DMC = ∆DAK (cạnh góc vuông - góc nhọn kề)

⇒ MC = AK (hai cạnh tương ứng)

Lại có: BM = BA (cmt)

⇒ BM + MC = BA + AK

⇒ BC = BK

∆BCK cân tại B

Mà BD là tia phân giác của ∠B

⇒ BD cũng là đường cao của ∆BCK

⇒ BD ⊥ KC

Mà BD ⊥ AM (cmt)

⇒ AM // KC

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

b: AD=MD

mà DM<DC

nên AD<DC

c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có

DA=DM

góc ADK=góc MDC

=>ΔDAK=ΔDMC

=>DK=DC

=>ΔDKC cân tại D

ΔBKC cân tại B

mà BN là phângíac

nên BN vuông góc KC

21 tháng 5 2023

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

b: AD=MD

mà DM<DC

nên AD<DC

c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có

DA=DM

góc ADK=góc MDC

=>ΔDAK=ΔDMC

=>DK=DC

=>ΔDKC cân tại D

ΔBKC cân tại B

mà BN là phângíac

nên BN vuông góc KC

 

 

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

b: ΔBAD=ΔBMD

=>BA=BM và DA=DM

=>BD là trung trực của AM

c: Xét ΔBKC có

KM,CA là đường cao

KM cắt CA tại D

=>D là trực tâm

=>BD vuông góc kC tại N

23 tháng 2 2023

a.Xét ΔDAB,ΔDMBΔ���,Δ��� có:

ˆDAB=ˆDMB(=90o)���^=���^(=90�)

Chung BD��
ˆABD=ˆMBD���^=���^

→ΔDAB=ΔDMB→Δ���=Δ���(cạnh huyền-góc nhọn)

b.Từ câu a →BA=BM,DA=DM→��=��,��=��

→B,D∈→�,�∈ trung trực AM��

→DB→�� là trung trực AM��

c.Ta có: DM⊥BC→KD⊥BC��⊥��→��⊥��

               CA⊥AB→CD⊥BK��⊥��→��⊥��

→D→� là trực tâm ΔBCKΔ���

→BD⊥CK→��⊥��

→BN⊥KC→��⊥��

Xét ΔBMK,ΔBACΔ���,Δ��� có:

Chung ^B�^

BM=BA��=��

ˆBMK=ˆBAC(=90o)���^=���^(=90�)

→ΔBMK=ΔBAC(c.g.c)→Δ���=Δ���(�.�.�)

→BK=BC→��=��

→ΔKBC→Δ��� cân tại B�

d.Ta có: ΔBCKΔ��� cân tại B,BN⊥CK→N�,��⊥��→� là trung điểm KC��

Trên tia đối của tia NP�� lấy điểm F� sao cho NP=NF��=��

Xét ΔNKP,ΔNCFΔ���,Δ��� có:

NK=NC��=��

ˆKNP=ˆCNF���^=���^

NP=NF��=��

→ΔNKP=ΔNCF(c.g.c)→Δ���=Δ���(�.�.�)

→KP=CF,ˆNKP=ˆNCF→KP//CF→CF//BP→��=��,���^=���^→��//��→��//��

Xét ΔFPC,ΔBPCΔ���,Δ��� có:

ˆCPF=ˆPCB���^=���^ vì NP//BC��//��

Chung NP��

ˆPCF=ˆCPB���^=���^ vì BP//CF��//��

→ΔFPC=ΔBCP(g.c.g)→Δ���=Δ���(�.�.�)

→CF=BP→��=��

→PK=BP→��=��

→P→� là trung điểm BK��

Do E,N�,� là trung điểm BC,CK��,��

→KE,BN,CP→��,��,�� đồng quy tại trọng tâm ΔKBCΔ��� 

a; Xét ΔDAB vuông tại A và ΔDMB vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔDAB=ΔDMB

b: D nằm giữa A và C

=>AD<AC
c: Xét ΔBKC có

CA,KM là đường cao

CA cắt KM tại D

=>D là trực tâm

=>BD vuông góc KC tại N

Xet ΔBKC có

BN vừa là phân giác, vùa là đường cao

=>ΔBKC cân tại B

Bạn tự vẽ hình nha =)

a) Xét tam giác DAB và tam giác DMB có:

 Góc DAB= Góc DMB (=90 độ)

 Chung cạnh BD

=> Góc DAB= Góc DMB

b) Vì 

Góc DAB= Góc DMB=> BA=BM,DA=DM

  => B,D trung trực AM

=> DB là  trung trực AM

c.Ta có: DM⊥BC=>KD⊥BC

               CA⊥AB=>CD⊥BK

 

=>D là trực tâm tam giác BCK

→BD⊥CK

→BN⊥KC

 

Xét ΔBMK,ΔBAC ta có:

Chung B

=>BM=BA

ˆBMK=ˆBAC(=90độ)

=>ΔBMK=ΔBAC(c.g.c)

=>BK=BC

=>ΔKBC cân tại B

 

10 tháng 5 2023

thanks bạn nhiều

a) Gọi G, F lần lượt là chân đường vuông góc từ O kẻ xuống AB và AC

Ta có: O nằm trên đường trung trực của AB(gt)

mà OG⊥AB(gt)

nên G là trung điểm của AB

Ta có: O nằm trên đường trung trực của AC(gt)

mà OF⊥AC(gt)

nên F là trung điểm của AC

Ta có: \(AG=\dfrac{AB}{2}\)(G là trung điểm của AB)

\(AF=\dfrac{AC}{2}\)(F là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AG=AF

Xét ΔAGO vuông tại G và ΔAFO vuông tại F có 

AO chung

AG=AF(cmt)

Do đó: ΔAGO=ΔAFO(cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{GAO}=\widehat{FAO}\)(hai góc tương ứng)

hay \(\widehat{BAO}=\widehat{CAO}\)

mà tia AO nằm giữa hai tia AB,AC

nên AO là tia phân giác của \(\widehat{BAC}\)(đpcm)

c) Xét ΔAOB và ΔAOC có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAO}=\widehat{CAO}\)(cmt)

AO chung

Do đó: ΔAOB=ΔAOC(c-g-c)

Suy ra: OB=OC(hai cạnh tương ứng)

Ta có: \(\widehat{ABC}+\widehat{KBC}=\widehat{ABK}\)(tia BC nằm giữa hai tia BA,BK)

nên \(\widehat{ABC}+\widehat{KBC}=90^0\)(1)

Ta có: \(\widehat{ACB}+\widehat{KCB}=\widehat{ACK}\)(tia CB nằm giữa hai tia CA,CK)

nên \(\widehat{ACB}+\widehat{KCB}=90^0\)(2)

Từ (1) và (2) suy ra \(\widehat{ABC}+\widehat{KBC}=\widehat{ACB}+\widehat{KCB}\)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{KBC}=\widehat{KCB}\)

Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)

nên ΔKBC cân tại K(Định lí đảo của tam giác cân)

Suy ra: KB=KC(hai cạnh bên)

Xét ΔBEC vuông tại E và ΔCDB vuông tại D có 

BC chung

\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBEC=ΔCDB(cạnh huyền-góc nhọn)

Suy ra: \(\widehat{BCE}=\widehat{CBD}\)(hai góc tương ứng)

hay \(\widehat{HBC}=\widehat{HCB}\)

Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)(cmt)

nên ΔHBC cân tại H(Định lí đảo của tam giác cân)

Suy ra: HB=HC(hai cạnh bên)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OB=OC(cmt)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: HB=HC(cmt)

nên H nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Ta có: KB=KC(cmt)

nên K nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(6)

Từ (3), (4), (5) và (6) suy ra A,O,H,K thẳng hàng(đpcm)