K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}=\dfrac{4}{5}\)

hay \(AB=\dfrac{4}{5}BC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2\cdot\dfrac{9}{25}=9^2=81\)

\(\Leftrightarrow BC^2=225\)

hay BC=15cm

\(\Leftrightarrow AB=\dfrac{4}{5}BC=12\left(cm\right)\)

19 tháng 8 2021

Ta có:     \(AC=AD+DC\)

         ⇔  \(AC=4+5\)

         ⇔  \(AC=9\) ( cm )

Áp dụng hệ thức lượng giác vào △ ABC, ta có: 

\(AB^2=AD.AC\)  ⇔  \(AB^2=4.9=36\)   ⇔   \(AB=6\)  ( cm )

Áp dụng định lí Py - ta - go vào tam giác vuông ABC ta có:

       \(BC^2=AB^2+AC^2\)

⇔   \(BC^2=6^2+9^2\)

⇔   \(BC^2=117\)

⇒     \(BC=\sqrt{117}=3\sqrt{13}\)

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Lời giải:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$ (cm)

Áp dụng hệ thức lượng trong tam giác vuông: 

$BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8$ (cm) 

$CH=BC-BH=5-1,8=3,2$ (cm)

$\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}$

$\Rightarrow \frac{BD}{BD+CD}=\frac{3}{7}$

Hay $\frac{BD}{BC}=\frac{3}{7}\Rightarrow BD=\frac{3}{7}.BC=\frac{3}{7}.5=\frac{15}{7}$ (cm)

$CD=BC-BD=5-\frac{15}{7}=\frac{20}{7}$ (cm)

$HD=BD-BH=\frac{15}{7}-1,8=\frac{12}{35}$ (cm)

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Hình vẽ:

a) Xét ΔABC có 

\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)

\(\Leftrightarrow\widehat{B}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)

mà BD+CD=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)

NV
10 tháng 9 2021

D là điểm nào em?

10 tháng 9 2021

???? AD,BD,CD???

21 tháng 8 2023

có ý gì đây

ΔABC vuông tại A

=>AB^2+AC^2=BC^2

=>BC=căn 3^2+4^2=5cm

ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC; BH*BC=BA^2; CH*CB=CA^2

=>AH=3*4/5=2,4cm; BH=3^2/5=1,8cm; CH=4^2/5=3,2cm

ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm

20 tháng 12 2023

A B H C D K

Ta có

\(\dfrac{AD}{CD}=\dfrac{AB}{BC}=\dfrac{4}{8}=\dfrac{1}{2}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy)

\(\Rightarrow BC=2AB\)

\(\Rightarrow\sin\widehat{ACB}=\dfrac{AB}{BC}=\dfrac{1}{2}\Rightarrow\widehat{ACB}=30^o\)

Ta có

\(AC=AD+CD=4+8=12\)

\(AB^2=BC^2-AC^2=4AB^2-12^2\) (Pitago)

\(\Rightarrow AB=4\sqrt{3}\Rightarrow BC=2AB=8\sqrt{3}\)

\(AB^2=BH.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{48}{8\sqrt{3}}=2\sqrt{3}\)

Xét tg vuông  ABC có

\(\widehat{ABC}=90^o-\widehat{ACB}=90^o-30^o=60^o\)

Ta có

\(\widehat{ABD}=\widehat{CBD}=\dfrac{\widehat{ABC}}{2}=30^o\)

Xét tg vuông HKB và tg vuông ABC có

\(\widehat{CBD}=\widehat{ACB}=30^o\)

=> tg HKB đồng dạng với tg ABC

\(\Rightarrow\dfrac{HK}{AB}=\dfrac{BH}{AC}\Rightarrow\dfrac{HK}{4\sqrt{3}}=\dfrac{2\sqrt{3}}{12}\)

\(\Rightarrow HK=\dfrac{4\sqrt{3}.2\sqrt{3}}{12}=2\)

Xét tg vuông AHC có

\(AH=\dfrac{1}{2}AC=\dfrac{1}{2}.12=6\) (trong tg vuông cạnh đối diện với góc \(30^o\) bằng nửa cạnh huyền)

\(\Rightarrow AK=AH-HK=6-2=4\)