K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.   Cho tam giac ABC vuong tai A duong cao AH.      a) Biet AH= 6cm, BH= 4,5cm, tinh AB, AC, BC, HC;      b) Biet AB= 6cm, BH= 3cm, tinh AH, AC, CH.2.   Cho tam giac ABC vuong tai A duong cao AH. Tinh dien tich tam giac ABC, biet AH= 12cm, BH= 9cm.3.   Cho tam giac ABC , biet BC= 7,5cm, CA= 4,5cm, AB= 6cm.      a) Tam giac ABC la tam giac gi ? Tinh duong cao AH cua tam giac ABC;      b) Tinh do dai cac doan thang BH, CH.4.   Cho tam giac vuong voi cac canh goc vuong la 7 va 24. Ke duong cao ung...
Đọc tiếp

1.   Cho tam giac ABC vuong tai A duong cao AH.

      a) Biet AH= 6cm, BH= 4,5cm, tinh AB, AC, BC, HC;

      b) Biet AB= 6cm, BH= 3cm, tinh AH, AC, CH.

2.   Cho tam giac ABC vuong tai A duong cao AH. Tinh dien tich tam giac ABC, biet AH= 12cm, BH= 9cm.

3.   Cho tam giac ABC , biet BC= 7,5cm, CA= 4,5cm, AB= 6cm.

      a) Tam giac ABC la tam giac gi ? Tinh duong cao AH cua tam giac ABC;

      b) Tinh do dai cac doan thang BH, CH.

4.   Cho tam giac vuong voi cac canh goc vuong la 7 va 24. Ke duong cao ung voi canh huyen. Tinh do dai duong cao va cac doan thang

    duong cao do chia ra tren canh huyen

5.   Cho mot tam giac vuong, biet ti so hai canh goc vuong la \(\frac{5}{12}\), canh huyen la 26cm. Tinh do dai cac canh goc vuong va hinh chieu cua

    canh goc vuong tren canh huyen.

6.   Cho tam giac ABC vuong tai A. Biet \(\frac{AB}{AC}=\frac{5}{7}\), duong cao AH= 15cm. Tinh HB, HC.

7.   Cho hinh thang can ABCD (AB // CD) , biet AB= 26cm, CD= 10cm va duong cheo AC vuong goc voi canh ben BC. Tinh dien tich cua

     hinh thang ABCD

8.   Cho tam giac ABC  vuong tai A, AB= 12cm, AC= 16cm, phan giac AD, duong cao AH. Tinh do dai cac doan thang HB, HD, HC.

9.   Cho tam giac ABC  vuong tai A, phan giac AD, duong cao AH. Biet BD= 15cm, CD= 20cm. Tinh do dai cac doan BH, HC.

10. Cho tam giac ABC  vuong tai A, duong cao AH. Tinh chu vi cua tam giac ABC, biet AH= 14cm, \(\frac{HB}{HC}=\frac{1}{4}\).

11. Cho hinh thang vuong ABCD, goc A= goc D= 900, AB= 15cm, AD= 20cm, cac duong cheo AC va BD vuong goc voi nhau o O.

      a) Tinh do dai cac doan OB, OD;

      b) Tinh do dai duong cheo AC;

      c) Tinh dien tich hinh thang ABCD

 

7

trời ơi nhiều quá sao làm nổi nhìn thấy chán 

19 tháng 7 2015

1.   Cho tam giac ABC vuong tai duong cao AH.

      a) Biet AH= 6cm, BH= 4,5cm, tinh AB, AC, BC, HC;

      b) Biet AB= 6cm, BH= 3cm, tinh AH, AC, CH.

2.   Cho tam giac ABC vuong tai duong cao AH. Tinh dien tich tam giac ABC, biet AH= 12cm, BH= 9cm.

3.   Cho tam giac ABC , biet BC= 7,5cm, CA= 4,5cm, AB= 6cm.

      a) Tam giac ABC la tam giac gi ? Tinh duong cao AH cua tam giac ABC;

      b) Tinh do dai cac doan thang BH, CH.

4.   Cho tam giac vuong voi cac canh goc vuong la 7 va 24. Ke duong cao ung voi canh huyen. Tinh do dai duong cao va cac doan thang

    duong cao do chia ra tren canh huyen

5.   Cho mot tam giac vuong, biet ti so hai canh goc vuong la $\frac{5}{12}$512 , canh huyen la 26cm. Tinh do dai cac canh goc vuong va hinh chieu cua

    canh goc vuong tren canh huyen.

6.   Cho tam giac ABC vuong tai A. Biet $\frac{AB}{AC}=\frac{5}{7}$ABAC =57 , duong cao AH= 15cm. Tinh HB, HC.

7.   Cho hinh thang can ABCD (AB // CD) , biet AB= 26cm, CD= 10cm va duong cheo AC vuong goc voi canh ben BC. Tinh dien tich cua

     hinh thang ABCD

8.   Cho tam giac ABC  vuong tai A, AB= 12cm, AC= 16cm, phan giac AD, duong cao AH. Tinh do dai cac doan thang HB, HD, HC.

9.   Cho tam giac ABC  vuong tai A, phan giac AD, duong cao AH. Biet BD= 15cm, CD= 20cm.Tinh do dai cac doan BH, HC.

10. Cho tam giac ABC  vuong tai A, duong cao AH. Tinh chu vi cua tam giac ABC, biet AH= 14cm, $\frac{HB}{HC}=\frac{1}{4}$HBHC =14 .

11. Cho hinh thang vuong ABCD, goc A= goc D= 900, AB= 15cm, AD= 20cm, cac duong cheoAC va BD vuong goc voi nhau o O.

      a) Tinh do dai cac doan OB, OD;

      b) Tinh do dai duong cheo AC;

      c) Tinh dien tich hinh thang ABCD

 

8 tháng 10 2017

a) theo hệ thức về cạnh và đường cao trong tam giác vuông có:

AH^2=BH*HC

hay AH^2=4*9

AH^2=36

=>AH=6cm

ADHE có gócD=gócA=gócE=90độ

=>ADHE là hình chữ nhật

=>AH=DE=6cm (2 đường chéo của hcn)

1: 

a: \(AH=\sqrt{2\cdot6}=2\sqrt{3}\left(cm\right)\)

\(AB=\sqrt{2\cdot8}=4\left(cm\right)\)

b: Xét ΔABC vuông tại A có sin C=AB/BC=1/2

nên góc C=30 độ

=>góc B=60 độ

2: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}\)

\(=\left(\dfrac{BH}{CH}\right)^2\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)

Bài 2:

a: AB/3=AC/4=k

=>AB=3k; AC=4k

Ta có: \(AB^2+AC^2=BC^2\)

=>\(25k^2=100\)

=>k=2

=>AB=6cm; AC=8cm

b: Xét ΔBAC có BM là phân giác

nên MA/AB=MC/BC

=>MA/3=MC/5

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{MA}{3}=\dfrac{MC}{5}=\dfrac{8}{8}=1\)

=>MA=3cm

2 tháng 12 2015

c. Bạn C/m Tam Giác HOF- Tam giác KOA đồng dạng

=>OH/OK=OF/OA

=>OK.OF= OH.OA=OB^2=OD^2

=>OK/OD=OD/OF

=> Tam giác ODK và Tam giác OFD đồng dạng

=>Tam giác ODF vuông tại D

=>FD la tiếp tuyến của (O) (đpcm)

d. EI=BI=IA (IE la trung tuyến của tam giác vuông ABE)

=>góc IEB=góc IBE; Cmtt ta có góc FDE = góc FED

mà (góc IBE+ góc FDE)= 90 nên (góc IEB+góc FED)=90

=> F,E,I thẳng hàng

Ta có BINF là hình bình hành nên  FN=BI=IA => IANF la hbh 

=> AN=IF=IE+EF=IB+DF=FN+DF=DN (đpcm)

 

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)