Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt BH = x (x > 0) => BC = (x + 6,4)
Có: AB2 = BH.BC => 36 = x(x + 6,4) => 36 = x2 + 6,4x => x2 + 6,4x - 36 = 0
=> (x + 10)(5x - 18) = 0 => x = -10 (loại) hoặc x = 18/5 (nhận)
=> BH = 18/5cm => BC = 18/5 + 6,4 = 10cm
Có: AC2 = HC.BC = 6,4 . 10 = 64 => AC = 8cm
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}\Rightarrow AH=\sqrt{\frac{576}{25}}=\frac{24}{5}cm\)
Vậy BC = 10cm , BH = 18/5cm , AH = 24/5cm , AC = 8cm
\(\Delta ABC\)có A=90 và AH là đường cao
Áp dụng hệ thức giữa cạnh góc vuông và hingf chiếu của nó trên cạnh huyền
=> \(AB^2=CH.BC\); \(AC^2=HC.BC\)
<=> \(AB^2=\left(BC-CH\right)BC\)
<=>\(BC^2=AB^2+CH.BH\)
=>\(BC^2=6^2+6,4.BC\)
<=> \(BC^2-6,4.BC-36=0\)
=> BC = 10(cm) (nhận) : BC=- 3,6 (cm) (loại)
=> \(AC=\sqrt{CH.BC}=\sqrt{6,4.10}=8\)(cm)
=>BH= BC - CH =10 - 6,4 = 3,6 (cm)
Áp dụng hệ thức giữa đường cao và các cạnh trong tam giác
=> AH.BC =AB.AC
=>AH = \(\frac{AB.AC}{BC}=\frac{6.8}{10}=4.8\left(cm\right)\)
Vậy AH =4,8 (cm) ; BC = 10 (cm) ; AC =8(cm) ; BH = 3,6 (cm)
Cho tam giác ABC vuông tại A, AH là đường cao. Biết AB=15cm,HC=16cm.Tính BC,AH,HB,AC.
Theo công hệ thức lương trong tam giác vuông ta có :
\(AB^2=BH.BC\Leftrightarrow9=1,8.BC\Rightarrow BC=5\left(cm\right)\)
Định lý Pytago :
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Như vậy khi ta quay tam giác ABC quanh trục AB ta thu được hình nón có đường cao \(AB=3\) , bán kính đáy \(AC=4\) và đường sinh \(BC=5\)
Diện tích xung quanh của hình nón thu được :
\(S_{xq}=\pi rl=\pi.AC.BC=20\pi\left(cm^2\right)\)
Thể tích hình nón là :
\(V=\frac{1}{3}\pi r^2h=\frac{1}{3}.\pi.4^2.3=16\pi\) ( cm khối )
a) Áp dụng ĐL Pytago vào tam giác ABC: BC^2= AB^2+AC^2= 3^2+4^2=25 =>> BC=5
Áp dụng hệ thức lượng: AH.BC=AB.AC => AH.5=3.4 => AH= 2,4
b) Áp dụng tỉ số lượng giác: sinB= AC/BC= 4/5= 0,8 => góc B= 59 độ
Góc C= 180-90-59= 31 độ
c) Áp dụng Pytago vào tam giác BHA: BH=1,8 (tự tính)
Góc BAH= 180-90-59= 31 độ
Góc BAE= 90/2= 45 độ (phân giác)
Góc HAE= 45 - 31= 14 độ
HE= tanHAE. AH= tan14. 2,4= 0,53
BE= HE+ BH= 0,53 + 1,8 = 2,33
CE= BC - BE= 5-2,33= 2,67
MẤY BÀI NÀY CHỈ CẦN THUỘC CÔNG THỨC LÀ LÀM ĐƯỢC HẾT .-. CHỊU KHÓ HỌC THUỘC ĐI RỒI MẤY BÀI NÀY SẼ TRỞ NÊN ĐƠN GIẢN ĐẾN BẤT NGỜ :))) ĐÂY LÀ KIẾN THỨC CŨ KO BIẾT LÀM ĐÚNG KO NỮA :33 HÊN XUI NHÁ!!
CỐ LÊN BABEEE <3
Xét \(\Delta HAC\)vuông tại H có HN là đường trung tuyến ứng với cạnh huyền
=> HN = NC = NA = AC/2
=> AC = 2HN = 8
Tương tự AB = 6
Theo hệ thức lượng trong tam giác vuông cho tam giác ABC vuông tại A có AH là đường cao thì
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)
\(\Leftrightarrow AH=\frac{24}{5}\)
Áp dụng định lí Pytago vào \(\Delta HAC\)vuông tại H có
\(HA^2+HC^2=AC^2\)
\(\Leftrightarrow\left(\frac{24}{5}\right)^2+HC^2=8^2\)
\(\Leftrightarrow HC=\frac{32}{5}\)
Tương tự \(HB=\frac{18}{5}\)
ta co \(AH^2=BH\cdot HC\Rightarrow AH^2=1,8HC\)
ap dung dl pitago vao tam giac vuong AHC co \(AH^2+CH^2=AC^2\Rightarrow1,8HC+HC^2=16\)
\(\Rightarrow CH^2+1,8CH-16=0\Rightarrow\left(CH-3,2\right)\left(CH+5\right)=0\)
\(\Rightarrow CH=3,2\) (do BH>0)
\(\Rightarrow AH^2=1,8\cdot CH=5.76\Rightarrow AH=2,4\)
\(BH+HC=BC\Rightarrow BC=1,8+3,2=5\)
ap dung dl pitago ta tinh dc \(AB^2+AC^2=BC^2\Rightarrow AB=3\)