Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
Áp dụng HTL trong tam giác ABC vg tại B có đường cao BH:
\(BH^2=AH.HC\)
\(\Rightarrow BH=\sqrt{AH.HC}=\sqrt{1.4}=2\)
Áp dụng đ/lý Pytago trong tam giác ABH vuông tại H và tam giác BHC vuông tại H:
\(\left\{{}\begin{matrix}AB^2=BH^2+AH^2\\BC^2=BH^2+HC^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{BH^2+AH^2}=\sqrt{2^2+1^2}=\sqrt{5}\\BC=\sqrt{BH^2+HC^2}=\sqrt{2^2+4^2}=2\sqrt{5}\end{matrix}\right.\)
Xét tam giác ABC có: BD là phân giác
\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{2\sqrt{5}}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{AD}{1}=\dfrac{DC}{2}\)
Mà \(AD+DC=BC=AH+HC=1+4=5\)
\(\Rightarrow\dfrac{AD}{1}=\dfrac{DC}{2}=\dfrac{AD+DC}{1+2}=\dfrac{5}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}AD=\dfrac{5}{3}\\DC=\dfrac{5.2}{3}=\dfrac{10}{3}\end{matrix}\right.\)
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
Xét tam giác ABC vuông tại A, ta có: BC2 = AB2 + AC2 (định lí Pi - ta - go)
\(\frac{AB}{AC}=\frac{5}{6}\) => \(AB=\frac{5}{6}AC\) => BC2 = \(\left(\frac{5}{6}AC\right)^2+AC^2=\frac{25}{36}AC^2+AC^2=\frac{61}{36}AC^2\)
=> BC = \(\frac{\sqrt{61}}{6}AC\)
Ta có: SABC = \(\frac{AB.AC}{2}=\frac{AH.BC}{2}\)(Vì ABC là t/giác vuông)
<=> \(\frac{5}{6}AC.AC=AH.\frac{\sqrt{61}}{6}AC\)
=> \(\frac{5}{6}AC^2=30\cdot\frac{\sqrt{61}}{6}.AC\)
=> \(\frac{5}{6}AC^2-5\sqrt{61}AC=0\)
<=> \(AC\left(\frac{5}{6}AC-5\sqrt{61}\right)=0\)
<=> \(\frac{5}{6}AC=5\sqrt{61}\)
<=> AC = \(6\sqrt{61}\) (cm) => AB = 5/6AC = \(5\sqrt{61}\) (cm)
=> BC = \(\frac{\sqrt{61}}{6}.6\sqrt{61}=61\)(cm)
Xét t/giác AHB vuông tại H, ta có: \(AB^2=AH^2+BH^2\)(định lí Pi - ta - go)
=> BH2 = AB2 - AH2 = \(\left(5\sqrt{61}\right)^2-30^2=625\)
=> BH = 25 (cm) => AC = 61 - 25 = 36 (cm)
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)