K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

16 tháng 12 2021

\(AH=\sqrt{21}\left(cm\right)\)

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

a: \(AH=2\sqrt{6}\left(cm\right)\)

\(AB=2\sqrt{10}\left(cm\right)\)

\(AC=2\sqrt{15}\left(cm\right)\)

30 tháng 9 2021

Áp dụng HTL trong tam giác ABC vg tại B có đường cao BH:

\(BH^2=AH.HC\)

\(\Rightarrow BH=\sqrt{AH.HC}=\sqrt{1.4}=2\)

Áp dụng đ/lý Pytago trong tam giác ABH vuông tại H và tam giác BHC vuông tại H:

\(\left\{{}\begin{matrix}AB^2=BH^2+AH^2\\BC^2=BH^2+HC^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{BH^2+AH^2}=\sqrt{2^2+1^2}=\sqrt{5}\\BC=\sqrt{BH^2+HC^2}=\sqrt{2^2+4^2}=2\sqrt{5}\end{matrix}\right.\)

Xét tam giác ABC có: BD là phân giác

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{2\sqrt{5}}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{AD}{1}=\dfrac{DC}{2}\)

Mà \(AD+DC=BC=AH+HC=1+4=5\)

\(\Rightarrow\dfrac{AD}{1}=\dfrac{DC}{2}=\dfrac{AD+DC}{1+2}=\dfrac{5}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}AD=\dfrac{5}{3}\\DC=\dfrac{5.2}{3}=\dfrac{10}{3}\end{matrix}\right.\)

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

10 tháng 7 2020

A B C H

Xét tam giác ABC vuông tại A, ta có: BC2 = AB2 + AC2 (định lí Pi - ta - go)

\(\frac{AB}{AC}=\frac{5}{6}\) => \(AB=\frac{5}{6}AC\) => BC2 = \(\left(\frac{5}{6}AC\right)^2+AC^2=\frac{25}{36}AC^2+AC^2=\frac{61}{36}AC^2\)

 => BC = \(\frac{\sqrt{61}}{6}AC\)

Ta có: SABC = \(\frac{AB.AC}{2}=\frac{AH.BC}{2}\)(Vì ABC là t/giác vuông)

<=> \(\frac{5}{6}AC.AC=AH.\frac{\sqrt{61}}{6}AC\)

=> \(\frac{5}{6}AC^2=30\cdot\frac{\sqrt{61}}{6}.AC\)

=> \(\frac{5}{6}AC^2-5\sqrt{61}AC=0\)

<=> \(AC\left(\frac{5}{6}AC-5\sqrt{61}\right)=0\)

<=> \(\frac{5}{6}AC=5\sqrt{61}\)

<=> AC = \(6\sqrt{61}\) (cm) => AB = 5/6AC =  \(5\sqrt{61}\) (cm)

=> BC = \(\frac{\sqrt{61}}{6}.6\sqrt{61}=61\)(cm)

Xét t/giác AHB vuông tại H, ta có: \(AB^2=AH^2+BH^2\)(định lí Pi - ta - go)

=> BH2 = AB2 - AH2 = \(\left(5\sqrt{61}\right)^2-30^2=625\)

=> BH =  25 (cm) => AC = 61 - 25 = 36 (cm)

10 tháng 7 2020

sửa HC = 36 (cm)