K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)

BC=6,4+3,6=10(cm)

ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC

=>AB^2=3,6*10=36; AC^2=6,4*10=64

=>AB=6cm; AC=8cm

b: ΔABC vuông tại B có BH là đường cao

nên AH*AK=AB^2

ΔABC vuông tại A có AH là đường cao

nên BH*BC=BA^2

=>AH*AK=BH*BC

c: Xét ΔAEK vuông tại E và ΔAHC vuông tại H có

góc EAK chung

=>ΔAEK đồng dạng với ΔAHC

=>AE/AH=AK/AC

=>AE/AK=AH/AC

Xét ΔAEH và ΔAKC có

AE/AK=AH/AC

góc EAH chung

=>ΔAEH đồng dạng với ΔAKC

=>\(\dfrac{EH}{KC}=\dfrac{AH}{AC}=\dfrac{3}{5}\)

=>HE=3/5KC

5 tháng 2 2020

Gọi AM cắt DE tại I 

Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)

\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)

Do \(\Delta AID\)vuông tại I suy ra 

\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)

\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)

\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)

Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra 

\(\widehat{MFC}=\widehat{ACF}\)

Mà 

5 tháng 2 2020

\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF

Mà MB=MC suy ra \(\Delta BFC\) có  FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\)  \(\Delta BFC\)vuông tại F hay  \(BF\perp CF\left(đpcm\right)\)

18 tháng 7 2021

Bạn tham khảo bài tại link :

https://olm.vn/hoi-dap/detail/244883081409.html

hoặc :

Câu hỏi của Vũ Nguyễn Phương Thảo - Toán lớp 8 - Học trực tuyến OLM

Hok tốt

18 tháng 7 2021

Trả lời :

Bạn vào hoc 24 có bài đấy