Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔKAB vuông tại K và ΔKMB vuông tại K có
KA=KM
KB chung
Do đó: ΔKAB=ΔKMB
b: Xét tứ giác ACMD có
K là trung điểm chung của AM và CD
=>ACMD là hình bình hành
=>MD//AC
=>MN//AC
Ta có: MN//AC
AB\(\perp\)AC
Do đó: MN\(\perp\)AB
a: Xét ΔBKA vuông tại K và ΔBKM vuông tại K có
BK chung
KA=KM
=>ΔBKA=ΔBKM
=>góc ABK=góc MBK
Xét ΔBAC và ΔBMC có
BA=BM
góc ABC=góc MBC
BC chung
=>ΔBAC=ΔBMC
=>góc BMC=90 độ
b: Xét tứ giác ACMD có
K là trung điểm chung của AM và CD
=>ACMD là hình bình hành
=>MD//AC
=>MD vuông góc AB
Mik làm được phần 1 thôi nhé !! Thông cảm nha !!!
a) Xét tam giác KAB và tam giác KMB có : KA = KM ( GT )
BK chung ( GT )
Góc AKB = Góc MKB ( GT )
=> Tam giác KAB = Tam giác KMB ( c.g.c )
Do AK_I_BC => Góc AKB = 90o , mà góc B = 30o => góc MAB = 60o
a)-Xét tam giác KAB và tam giác KMB có:KA=KM(GT)
BK chung(GT)
góc AKB=gócMKB(GT)
=>tam giác KAB=tam giác KMB(c.g.c)
-Do AK_I_BC=>góc AKB=90 độ,mà góc B=30 độ=>góc MAB=60 độ
a: Xét ΔACK và ΔADK co
AC=AD
góc CAK=góc DAK
AK chung
=>ΔACK=ΔADK
=>góc ADK=90 độ
=>KD vuông góc AB
b: Xét ΔACB có AK là phân giác
nên KC/AC=KB/AB
mà AC<AB
nên KC<KB
Bài 1:
a/Xét \(\Delta KMD\)và \(\Delta CMA\)có:MD=MA(gt);KM=MC(do M là trung điểm KC);^KMD=^CMA(đối đỉnh)
Do đó:\(\Delta KMD=\Delta CMA\left(c.g.c\right)\)
b/\(\Delta KMD=\Delta CMA\left(c.g.c\right)\Rightarrow\widehat{MKD}=\widehat{MCA}\Rightarrow KD//CA\Rightarrow\widehat{CKD}=\widehat{ACB}=30^0\Rightarrow\widehat{AKD}=90^0+30^0=120^0\)c/Ta có KN//AC(do cùng vuông góc với AB),mà KD//CA nên K;N;D thẳng hàng