K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng ĐL Pytago vào tam giác ABC vuông tại A ta có : 

\(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{36}=6\left(cm\right)\)

Có diện tích tam giác ABC \(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AB.AC\Leftrightarrow AH.BC=AB.AC\)

\(\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=\frac{48}{10}=4,8\left(cm\right)\)

Áp dụng ĐL Pytago vào tam giác ABH vuông tại H ta có : 

\(BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=\sqrt{12,96}=3,6\left(cm\right)\)

Áp dụng ĐL Pytago vào tam giác ACH vuông tại H ta có : 

\(CH=\sqrt{AC^2-AH^2}=\sqrt{8^2-4,8^2}=\sqrt{40,96}=6,4\left(cm\right)\)

18 tháng 3 2021

Giúp mình với, mình cảm ơn!😢

18 tháng 3 2021

a, Xét tam giác HBA vuông tại H có:

AB2=AH2+BH2(định lí py ta go)

hay 100=AH2+36

=> AH2=64

=> AH=8(cm)

b, Xét tam giác ABH và tam giác ACH có:

góc AHB=góc AHC =90 độ

AB=AC (tam giác ABC cân tại A)

AH chung

=> tam giác ABH = tam giác ACH

c,

Xét tam giác DBH và tam giác ECH có:

BD=CE (gt)

góc DBH= góc ECH (tam giác ABC Cân tại A)

BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)

=> tam giác DBH=tam giác ECH

=> DH=EH( 2 cạnh tương ứng)

=> tam giác HDE cân tại H

d) Vì AB = AC; BD = CE

mà AB - BD = AD

AC - CE = AE

=> AD = AE

Vì ΔHDE cân

=> H ∈ đường trung trực cạnh DE (1)

Xét ΔADHvàΔAEHcó

AD = AE (cmt)

AH (chung)

DH = HE (cmt)

Do đó: ΔADH=ΔAEH(c−c−c)

=> AD = AE ( hai cạnh tương ứng)

=> ΔADE cân tại A

=> A ∈ đường trung trực cạnh DE (2)

(1); (2) => A,H ∈ đường trung trực cạnh DE

=>AH là đường trung trực cạnh DE

CHÚC BẠN HỌC TỐT

21 tháng 3 2017

a: ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

mà \(\widehat{ABC}=74^0\)

nên \(\widehat{ACB}=74^0\)

Ta có: ΔABC cân tại A

=>\(\widehat{BAC}=180^0-2\cdot\widehat{ABC}\)

=>\(\widehat{BAC}=180^0-2\cdot74^0=32^0\)

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK

=>ΔAHK cân tại A

c: Ta có: ΔAHB vuông tại H

=>\(AH^2+BH^2=AB^2\)

=>\(AH^2=10^2-6^2=64\)

=>\(AH=\sqrt{64}=8\left(cm\right)\)

=>AK=8(cm)

d: Xét ΔAKO vuông tại K và ΔAHO vuông tại H có

AO chung

AH=AK

Do đó: ΔAKO=ΔAHO

=>\(\widehat{KAO}=\widehat{HAO}\)

=>\(\widehat{BAO}=\widehat{CAO}\)

=>AO là phân giác của góc BAC

25 tháng 6 2021

Diện tích tam giác ABC là:

     6.8:2=24 (cm2)

Áp dụng định lí Py-ta-go cho tam giác ABC, ta có:

AB2+AC2=BC2

=>62+82=BC2=>36+64=BC2=>BC=10 (cm)

Đường cao AH dài là:

     24.2:10=4,8 (cm)

Áp dụng định lí Py-ta-go cho tam giác ABH, ta có:

AH2+BH2=AB2

=>4,82+BH2=36

=>23,04+BH2=36

=>BH2=12,96=>BH=3,6 (cm)

Độ dài CH là:

     10-3,6=6,4 (cm)

           Đáp số: AH: 4,8 cm; BH: 3,6 cm; CH: 6,4 cm; BC: 10 cm

26 tháng 6 2021

\(\text{Áp dụng định lý Pytago ta có:}\)

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2=6^2+8^2\)

\(\Rightarrow BC^2=100\)

\(\Rightarrow BC=10\left(\text{Vì BC}>0\right)\)

\(S_{\Delta ABC}\text{ là}:\)

\(\frac{6.8}{2}=24\)

\(\text{Vì AH là đường cao hạ từ đỉnh A và BC là đáy tương ứng với đường cao AH nên}\)

\(S_{\Delta ABC}=\frac{BC.AH}{2}=\frac{10.AH}{2}=24\)

\(\Rightarrow AH=24:5=4,8\)

\(\text{Áp dụng định lý Pytago ta có:}\)

\(AB^2=AH^2+BH^2\)

\(\Rightarrow6^2=4,8^2+BH^2\)

\(BH^2=12.96\)

\(BH=3,6\)

\(\text{CH thì tính tương tự như BH nha}\)

4 tháng 5 2022

a) Áp dụng ĐL Pytago ta có: \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

b) Xét \(\Delta ABH\) và \(\Delta ADH\) có: 

\(AH\) chung

\(\widehat{AHB}=\widehat{AHD}=90^0\)

\(BH=DH\) (gt)

\(\Rightarrow\Delta ABH=\Delta ADH\left(c.g.c\right)\)

c) Do \(\Delta ABH=\Delta ADH\Rightarrow\widehat{B}=\widehat{ADH}\) mà \(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)

\(\Rightarrow\widehat{EDC}=\widehat{B}\)

Lại có \(BA//DK\) (do cùng vuông góc \(AC\)\(\Rightarrow\widehat{KDC}=\widehat{B}\) (đồng vị)

Xét \(\Delta DKC\) và \(\Delta DEC\) có:

\(\widehat{DKC}=\widehat{DEC}=90^0\)

\(CD\) chung

\(\widehat{KDC}=\widehat{EDC}=\widehat{B}\)

\(\Rightarrow\Delta DKC=\Delta DEC\) (ch - gn) \(\Rightarrow DE=DK\)

d) Xét tam giác \(AMC\) có: \(\left\{{}\begin{matrix}MK\perp AC\\AE\perp MC\\MK\cap AE=D\end{matrix}\right.\)

\(\Rightarrow D\) là trực tâm \(\Rightarrow MD\perp AC\) mà \(DK\perp AC\Rightarrow MD\equiv MK\)

\(\Rightarrow MK\perp AC\Rightarrow MK//AB\)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

c: BH=CH=3cm

AH=căn 5^2-3^2=4cm

13 tháng 2 2022

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=12cm\)

Ta có : \(S_{ABC}=\dfrac{1}{2}AB.AC;S_{ABC}=\dfrac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{60}{13}cm\)

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=\dfrac{25}{13}cm\)

-> CH = BC - BH = \(13-\dfrac{25}{13}=\dfrac{154}{13}\)cm