Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\left(pytago\right)\)
Áp dụng HTL: \(AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\dfrac{192}{20}=9,6\left(cm\right)\)
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{16}{20}=\dfrac{4}{5}\approx\sin53^07'\Leftrightarrow\widehat{B}\approx53^07'\)
a) Để tính AC, ta sử dụng định lý Pythagoras trong tam giác vuông: AC^2 = AB^2 + BC^2. Với AB = 12cm và BC = 20cm, ta có: AC^2 = 12^2 + 20^2 = 144 + 400 = 544. Do đó, AC = √544 ≈ 23.32cm.
Để tính góc B, ta sử dụng công thức sin(B) = BC/AC. Với BC = 20cm và AC = 23.32cm, ta có: sin(B) = 20/23.32 ≈ 0.857. Từ đó, góc B ≈ arcsin(0.857) ≈ 58.62°.
Để tính AH, ta sử dụng công thức cos(B) = AH/AC. Với góc B ≈ 58.62° và AC = 23.32cm, ta có: cos(B) = AH/23.32. Từ đó, AH = 23.32 * cos(58.62°) ≈ 11.39cm.
b) Ta cần chứng minh AE.AC = AB^2 - HB^2. Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AC = AB * cos(B) (theo định lý cos trong tam giác vuông) HB = AB * sin(B) (theo định lý sin trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: AE.AC = (AB * sin(B)) * (AB * cos(B)) = AB^2 * sin(B) * cos(B) = AB^2 * (sin(B) * cos(B)) = AB^2 * (sin^2(B) / sin(B)) = AB^2 * (1 - sin^2(B)) = AB^2 * (1 - (sin(B))^2) = AB^2 * (1 - (HB/AB)^2) = AB^2 - HB^2
Vậy, ta đã chứng minh AE.AC = AB^2 - HB^2.
c) Ta cần chứng minh AF = AE * tan(B). Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AF = AB * cos(B) (theo định lý cos trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: AF = AB * cos(B) = AB * (cos(B) / sin(B)) * sin(B) = (AB * cos(B) / sin(B)) * sin(B) = AE * sin(B) = AE * tan(B)
Vậy, ta đã chứng minh AF = AE * tan(B).
d) Ta cần chứng minh tỉ lệ giữa các đường cao trong tam giác vuông ΔABC. CE/BF = AC/AB
Vì ΔABC vuông tại A, ta có: CE = AC * cos(B) (theo định lý cos trong tam giác vuông) BF = AB * cos(B) (theo định lý cos trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: CE/BF = (AC * cos(B)) / (AB * cos(B)) = AC/AB
Vậy, ta đã chứng minh CE/BF = AC/AB.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
bạn tham khảo ở đây,mình từng làm 1 lần rồi
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-aduong-cao-ahhfvuong-goc-voi-ac-tai-f-he-vuong-goc-voi-ab-tai-egoi-o-la-giao-diem-cua-ahefchung-minhaaeabafacbbhhc4oeof.1218858994804
1) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
a) tam giác ABC vuông tại A nên áp dụng Py-ta-go:
\(\Rightarrow AC^2=BC^2-AB^2=25^2-15^2=400\Rightarrow AC=20\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{15.20}{25}=12\left(cm\right)\)
b) tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)
tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow AH.HB=HE.AB\Rightarrow HE=\dfrac{AH.HB}{AB}=\dfrac{12.9}{15}=\dfrac{36}{5}\left(cm\right)\)
b) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow AE.AB=AH^2\)
tam giác AHC vuông tại H có đường cao HF nên áp dụng hệ thức lượng
\(\Rightarrow AF.AC=AH^2=AE.AB\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=25^2-15^2=400\)
hay AC=20(cm)
c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
c: Xét ΔAHB vuông tại H có \(AE\cdot AB=AH^2\)
=>\(AE=\dfrac{AH^2}{AB}\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
=>\(AF=\dfrac{AH^2}{AC}\)
XétΔABC vuông tại A có
\(tanC=\dfrac{AB}{AC}\)
\(\dfrac{AF}{AE}=\dfrac{AH^2}{AC}:\dfrac{AH^2}{AB}=\dfrac{AB}{AC}=tanC\)
=>\(AF=AE\cdot tanC\)