K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

a) Xét tam giác AHB và tam giác DHB có:
góc H = 90 độ
HB chung
AB=DB (gt)
=> tam gaics AHB = tam giác DHB ( cạnh huyền cạnh góc vuông)
=> AH = HD ( 2 cạnh tương ứng)
b) Chứng min htuowng tự có có:
tam giác AKC = tam giác EKC ( cạnh huyền - cạnh góc vuông)
=> AK = KE ( 2 cạnh tương ứng)
*) Xét tám giác ADE có:
AH = HD ( cmt)
AK = KE ( cmt)
=> HK alf đường trung bình của hình thang
=> HK//DE hay nói cách khác
HK // DB

27 tháng 11 2021

TL :

Đây nhé

Xin lỗi phải chờ lâu

#####

Uchi ha

sáuke

nighy

undefined

undefined

6 tháng 8 2015

a) Vì \(\frac{CD}{AC}=\frac{1,5}{3}=\frac{1}{2}\)\(\frac{CE}{BC}=\frac{2,5}{5}=\frac{1}{2}\)

Nên \(\frac{CD}{AC}=\frac{CE}{BC}=\frac{1}{2}\)

Xét ΔCDE và ΔCAB có

      \(\frac{CD}{AC}=\frac{CE}{BC}=\frac{1}{2}\)

Góc DCE=ACB(đối đỉnh)

Vậy hai tam giác đồng dạng với nhau

=> Góc CDE=CAB=90 độ

Vậy ΔCDE là tam giác vuông.

Áp dụng định lí Pi-ta-go vào ΔCDE ta có:

      \(CE^2=DC^2+DE^2\Rightarrow DE^2=CE^2-CD^2=2,5^2-1,5^2=4\)

=> \(DE=\sqrt{4}=2cm\).

b) Vì ΔCDE đồng dạng với ΔCAB nên

\(\frac{CD}{AC}=\frac{DE}{AB}\Rightarrow AB=\frac{AC.DE}{CD}=\frac{3.2}{1,5}=4\left(cm\right)\)

ΔABC vuông tại A, đường cao AH, theo hệ thức lượng, ta có:

  •       \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{4.3}{5}=2,4\left(cm\right)\)
  •        \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8\left(cm\right)\)

\(CH=BC-CH=5-1,8=3,2\left(cm\right)\)

  •  

 

6 tháng 9 2015

bạn vô đây coi bài nào thích hớp thì xem Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE a) Chứng minh rằng HK song song với DE b) Tính HK, biết chu vi tam giác ABC bằng 10 cm Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB... Xem thêm - Tìm với Google

11 tháng 6 2019

Cậu tự vẽ hình nhé

a, kẻ MK vuông BC, NG vuông BC

Tam g ABC cân => g ABC= g ACB 

Lại có g ACB = g GCN (dd)

=> g GCN = g ABC=g MBK

Xét tg MBK và tg NCG 

g MKB= g NGC =90° 

g MBK = g NCG (cmt)

MB= CN(gt)

=> tg MBK= tg NCG ( ch-gn)

=> MK=NG (2 cạnh tương ứng)

Vì MK vuông BC, NG vuông BC => NG// MK 

=> g GNM = g KMN ( so le trong )

Xét tg MKD VÀ TG NGD

g MKD = g DGN = 90°

g KMD = gDNG ( cmt)

Mk= GN (cmt)

=> tg MKD = tg NGD (_cgv-gn)

=> MD= ND (2 ctu)

=> D là td MN ( dpcm)

11 tháng 6 2019

Xét tam giác cân ABC , AH là đường cao => AH là trung trực 

Lại có E thuộc AH => EC= EB 

Xét tg ABE và tg ACE

AB=AC (tg ABC cân)

BE= EC (cmt)

AE cạnh chung 

=> tg ABE = tg ACE (ccc)

=> g ABE = g ACE ( 2 góc tương ứng)(1)

Lại có DE là trung trực MN => ME = NE

Xét tg MBE và tg NCE

MB = NC ( gt)

ME = NE (cmt)

BE = CE (cmt)

=> tg MBE = tg NCE (ccc)

=> g ECN = g EBM (2 góc t u ) (2)

Từ 1), 2) => g ECA = g ECN 

Lại có 2 góc này bù nhau

=>g ACE= 90°= g ABE

Xét tg ABE vuông

+ theo đl pytago:

=> AE = √( ab2+bE2)= √( 62+4,52)= 7,5 (cmcm)

+ BH là đcao, theo hệ thức lượng trong tg vuông

=>+ AB2= AH.AE => AH= 62:7,5=4,8 (cmcm)

+ 1/(BH2)= 1/(AB2)+1/(BE2) => BH = √(1:( (1/62)+(1/4,52))= 3,6(ccmcm)

=> BC= 3,6.2= 7,2 (cm)

=> dt tg ABC có đcao AH là 7,2.4,8.1/2= 28,08(cm2)

Vậy S tg ABC = 28,08 cm2

10 tháng 8 2016

GIẢI:

 

a) Xét Δ ABC và Δ AED, ta có :

\widehat{BAC}= \widehat{DAC}=90^0 (đối đỉnh)

AB = AD (gt)

AC = AD (gt)

=> Δ ABC = Δ AED (hai cạnh góc vuông)

=> BC = DE

Xét Δ ABD, ta có :

\widehat{BAC}=90^0 (Δ ABC vuông tại A)

=> AD \bot  AE

=>  \widehat{BAD}=90^0

=> Δ ABD vuông tại A.

mà : AB = AD (gt)

=> Δ ABD vuông cân tại A.

=>\widehat{BDC}=45^0

cmtt : \widehat{BCE}=45^0

=> \widehat{BDC}=\widehat{BCE}=45^0

mà : \widehat{BDC},\widehat{BCE} ở vị trí so le trong

=> BD // CE

b) Xét Δ MNC, ta có :

NK \bot  MC = > NK là đường cao thứ 1.

MH \bot  NC = > MH là đường cao thứ 2.

NK cắt MH tại A.

=> A là trực tâm. = > CA là đường cao thứ 3.

=> MN \bot  AC tại I.

mà : AB \bot  AC

=> MN // AB.

c) Xét Δ AMC, ta có :

 \widehat{MAE}= \widehat{BAH} (đối đỉnh)

\widehat{MEA}= \widehat{BCA} (Δ ABC = Δ AED)

=>\widehat{MAE}=\widehat{MEA} (cùng phụ góc ABC)

=> Δ AMC cân tại M

=> AM = ME (1)

Xét Δ AMI và Δ DMI, ta có :

\widehat{AIM }= \widehat{DIM}=90^0 (MN \bot  AC tại I)

IM cạnh chung.

mặt khác : \widehat{IMA }= \widehat{MAE} (so le trong)

\widehat{DMI }= \widehat{MEA} (đồng vị)

mà : \widehat{MAE}=\widehat{MEA} (cmt)

=> \widehat{IMA }= \widehat{IMD}

=> Δ AMI = Δ DMI (góc nhọn – cạnh góc vuông)

=> MA = MD (2)

từ (1) và (2), suy ta : MA = ME = MD

ta lại có : ME = MD = DE/2 (D, M, E thẳng hàng)

=>MA = DE/2.

29 tháng 6 2020

từ cách vẽ hình