Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AC=AD+DC=4+5=9\)
Ta có: \(AC^2=BC^2-AB^2\)
\(\to BC^2-AB^2=81\)
\(BD\) là đường phân giác \(\widehat{B}\)
\(\to\dfrac{BA}{AD}=\dfrac{BC}{DC}\)
\(\to\dfrac{BA}{4}=\dfrac{BC}{5}\)
\(\to\dfrac{BA^2}{16}=\dfrac{BC^2}{25}=\dfrac{BC^2-BA^2}{25-16}=\dfrac{81}{9}=9\)
\(\to\begin{cases}BA^2=144\\BC^2=225\end{cases}\)
\(\to\begin{cases}BA=12\\BC=15\end{cases}\)
Vậy \(BA=12cm, Bc=15cm\)
a:
Sửa đề tam giác DEC
Xet ΔABC vuông tại A và ΔDEC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDEC
b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)
\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)
AD là phân giác
=>BD/AB=CD/AC
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)
=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)
vì BD là tia phân giác nên ta có:
AD/DC = AB/BC = 4/5
mà BC^2 = AB^2 + AC^2 ( tam giác ABC vuông tại A )
Nên : AB/căn bậc hai(AB^2+ 9^2) = 4/5
=> 5AB = 4*canbạc hai(AB^2 + 81)
<=>25AB^2 = 16*(AB^2+81)
<=> 9AB^2 =1296
<=> AB^2 = 144
=> AB = 12 cm
Ta có: AD+DC=AC(D nằm giữa A và C)
nên AC=4+5=9(cm)