Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta chứng minh ABEC là hình bình hành mà có Â = 900 Þ tứ giác ABEC là hình chữ nhật.
b) Áp dụng định lý về đường trung bình của tam giác △ A D C ⇒ F G = 1 2 A D = 2 c m
c) Để tứ giác ABEC là hình vuông thì AB = AC ÞDABC phải là tam giác vuông cân tại A.
Lời giải:
a. $M$ là trung điểm $BC$, $N$ là trung điểm $AC$ thì $MN$ là đường trung bình của tam giác $ABC$ ứng với cạnh $AB$
$\Rightarrow MN=\frac{1}{2}AB=\frac{1}{2}.12=6$ (cm)
b. $E, A$ đối xứng nhau qua $M$ nghĩa là $M$ là trung điểm $AE$.
Tứ giác $ABEC$ có 2 đường chéo $BC, AE$ cắt nhau tại trung điểm $M$ của mỗi đường nên $ABEC$ là hình bình hành
Mà $\widehat{BAC}=90^0$ nên $ABEC$ là hình chữ nhật.
b. Vì $B,D$ đối xứng nhau qua $A$ nên $BA=AD$
$ABEC$ là hcn (cmt) nên $AB=EC$
$\Rightarrow AD=EC$ (đpcm)
Mặt khác:
$ABEC$ là hcn nên $AB\parallel EC\Rightarrow AD\parallel EC$
Xét tứ giác $ADCE$ có $AD=CE$ và $AD\parallel CE$ nên $ADCE$ là hbh (đpcm)
a,Xét tứ giác ABEC có hai đường chéo cắt nhau tại trung điểm mỗi đường
suy ra ABEC là hình bình hành
b,Để ABEC là hình chữ nhật thì góc BAC=90độ suy ra tam giác ABC vuộng tại A thì ABEC là hình chữ nhật
Để ABEC là hình thoi thì AB=AC suy ra tam giác ABC cân tại A thì ABEC là hình thoi
Để ABEC là hình vuông thì góc BAC=90độ và AB=AC suy ra tam giác ABC vuông cân tại A thì ABEC là hình vuông
a, xét abec có
bm=mc, am=me
=> abec là hbh
b hcn:
tam giác abc: có a là góc vuông
có:ab=ac
có: abc vuông cân
Bài 1:
a: Xét tứ giác ABEC có
D là trung điểm chung của AE và BC
nên ABEC là hình bình hành
Hình bình hành ABEC có \(\widehat{BAC}=90^0\)
nên ABEC là hình chữ nhật
b: ABEC là hình chữ nhật
=>AB//CE và AB=CE
AB=CE
AB=AF
Do đó: CE=AF
AB//CE
\(A\in BF\)
Do đó: BF//CE
=>FA//CE
Xét tứ giác AECF có
AF//CE
AF=CE
Do đó: AECF là hình bình hành
=>AE//CF
c: Xét tứ giác BECF có
BF//CE
nên BECF là hình thang
Hình thang BECF có \(EB\perp BF\)
nên BECF là hình thang vuông
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2=10^2-8^2=36\)
=>AB=6(cm)
ABEC là hình chữ nhật
=>\(S_{ABEC}=AB\cdot AC=6\cdot8=48\left(cm^2\right)\)
ΔCAF vuông tại A
=>\(S_{ACF}=\dfrac{1}{2}\cdot AC\cdot AF=\dfrac{1}{2}\cdot6\cdot8=\dfrac{1}{2}\cdot48=24\)
=>\(S_{ABEC}>S_{ACF}\)
Bài 1:
a) Xét t, giác ABEC có
M-tđ BC(AM- trung tuyến)
M-tđ AE(E đx A qua M)
BC cắt AE tại M
=> ABEC là hình bình hành (dhnb)
b)Hbh ABEC là hình thoi
<=> AB=AC(dhnb)
Vậy t.giác ABC cân tại A để ABEC là hình thoi
HBH ABEC là hình chữ nhật
<=> A=90 độ (dhnb)
Vậy t.giác ABC vuông tại A để ABEC là hình chữ nhật
Bài 2:
Xét t.giác AKMH có
A=90*
H=90*(MHvg góc AC)
K=90*(MK vg góc AB)
=> AKMH là hình chữ nhật(dhnb)
b) AM là trung tuyến ứng vs cạnh huyền
=> AM=MC
=> tam giác AMC cân tại M
MH là đg cao
=> MH là trung tuyến
=> H - tđ AC
Xét t,giác AMCP có
H- tđ Ac( cmt)
H - tđ MP ( P đx M qua H)
AC cắt MP tại H
=> AMCP là hình bình hành (dhnb)
lại có AM=MC( cmt)
=> AMCP là hình thoi ( dhnb)
Bài 3:
Xét tam giác ABC vg tại A có
AB2 + AC2 = BC2
TS: 52 + 122= BC2
BC2= 25+144
=> BC= 13
Am là trung tuyến
=> AM=1/2BC
=> AM =7,5
a; Xét tứ giác AEMF có
góc AEM=góc AFM=góc FAE=90 độ
=>AEMF là hình chữ nhật
b: Xét ΔBAC có
M là trung điểm của BC
ME//AC
=>E là trung điểm của AB
Xét tứ giác AMBN có
E là trung điẻm chung của AB và MN
MA=MB
=>AMBN là hình thoi
c: Để AMBN là hình vuông thì góc AMB=90 độ
=>góc B=45 độ
d: AM=5cm
=>AN=5cm
MN=AC=căn 10^2-8^2=6cm
\(P=\dfrac{5+5+6}{2}=8\left(cm\right)\)
\(S=\sqrt{8\cdot\left(8-5\right)\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot2\cdot3\cdot3}=4\cdot3=12\left(cm^2\right)\)
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
a: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABEC là hình chữ nhật
b: Để ABEC là hình vuông thì AB=AC