K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

a: Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

Suy ra: AM=EF

hay EF=5cm

15 tháng 12 2023

a: Ta có: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Ta có: ΔABC vuông tại A

mà AI là đường trung tuyến

nên \(AI=\dfrac{BC}{2}=5\left(cm\right)\)

b: Xét tứ giác AMIN có

\(\widehat{AMI}=\widehat{ANI}=\widehat{MAN}=90^0\)

=>AMIN là hình chữ nhật

c: Xét ΔABC có

I là trung điểm của CB

IN//AB

Do đó: N là trung điểm của AC

Xét tứ giác AICD có

N là trung điểm chung của AC và ID

=>AICD là hình bình hành

Hình bình hành AICD có AC\(\perp\)ID

nên AICD là hình thoi

16 tháng 12 2022

a: BC=10cm

=>AI=5cm

b: Xét tứ giác AMIN có

góc AMI=góc ANI=góc MAN=90 độ

nên AMIN là hình chữ nhật

c: Xét ΔABC có

I là trung điểm của BC

IN//AB

Do đó: N là trung điểm của AC

Xét tứ giác ADCI có

N là trung điểm chung của AC và DI

IA=IC

Do đó: ADCI là hình thoi

18 tháng 12 2022

Cho mình xin hình đc ko

 

 

 

20 tháng 12 2020

a) Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)(\(\widehat{BAC}=90^0\), E∈AB, F∈AC)

\(\widehat{AEM}=90^0\)(ME⊥AB)

\(\widehat{AFM}=90^0\)(MF⊥AC)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

\(\Leftrightarrow BC=\sqrt{169}=13cm\)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{13}{2}=6.5cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên AM=EF(Hai đường chéo của hình chữ nhật AEMF)

mà AM=6,5cm

nên EF=6,5cm

Vậy: EF=6,5cm

c) Xét ΔABC có

M là trung điểm của BC(gt)

ME//AC(ME//AF, C∈AF)

Do đó: E là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}=\dfrac{5}{2}=2.5cm\)

Xét ΔABC có 

M là trung điểm của BC(gt)

MF//AB(MF//AE, B∈AE)

Do đó: F là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

\(AF=\dfrac{AC}{2}=\dfrac{12}{2}=6cm\)

Ta có: AEMF là hình chữ nhật(cmt)

nên \(S_{AEMF}=AE\cdot AF=2.5\cdot6=15cm^2\)

a: Xét tứ giác AEMF có

góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

b: AB=căn (20^2-16^2)=12cm

S=12*16/2=12*8=96cm2

c: Xét tứ giác AMCD có

F là trung điểm chung của AC và MD

MA=MC

Do đó: AMCD là hình thoi

17 tháng 12 2020

a) Xét ΔABC có 

F là trung điểm của AC(gt)

M là trung điểm của BC(gt)

Do đó: FM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒FM//AB và \(FM=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà E∈AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)

nên FM//AE và FM=AE

Xét tứ giác AEMF có 

FM//AE(cmt)

FM=AE(cmt)

Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AEMF có \(\widehat{FAE}=90^0\)(ΔABC vuông tại A)

nên AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)