K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2023

*lâu r ms lm hình:DD*

+,Có `BK` là p/g `=>hat(B_1)=hat(B_2)`

Có `BM=BC` và `AM=NC` (\(gt\))

`=>BM-AM=BC-NC`

hay `BA=BN`

Xét `Delta ABK` và `Delta NBK` có :

`{:(BK-chung),(hat(B_1)=hat(B_2)(cmt)),(BA=BN(cmt)):}}`

`=>Delta ABK = Delta NBK(c.g.c)`

`=>{(hat(A_1)=hat(N_1)(tương.ứng)(1)),(AK=NK(tương.ứng)):}`

+, Từ `(1)` ; `hat(A_1)+hat(A_2)=180^0` (kề bù) ; `hat(N_1)+hat(N_2)=180^0` (kề bù)

`=>hat(A_2)=hat(N_2)`

Xét `Delta AKM` và `Delta NKC` có :

`{:(AK=NK(cmt)),(hat(A_2)=hat(N_2)(cmt)),(AM=NC(Gt)):}}`

`=>Delta AKM=Delta NKC (c.g.c)`

`=>hat(K_1)=hat(K_2)` ( 2 góc tương ứng )

`=>hat(K_1)+hat(AKN)=hat(K_2)+hat(AKN)`

hay `hat(MKN)=hat(CKA)`

mà `hat(CKA)=180^0` (`K in AC` )

Nên `hat(MKN)=180^0`

`=>M ;  K ; N` thẳng hàng 

Hình :

18 tháng 2 2020

Ta có : Tam giác ABM cân tại B

=>MAB^=AMB^ (1)

Lại có : IMB^=IAB^=90* (2)

Từ 1 và 2 : +)IAM^=90*-MAB^

                  +)IMA^ =90*-AMB^

                  =>IAM^=IMA^

=>Tam giác IAM cân tại I

=>IA=iM

18 tháng 2 2020

A B C M I N K P 1 2
''∠'' là góc nhé.
a) Vì ∆ABC vuông tại A (GT) 
=> ∠BAC = 90o (ĐN) (1)
Vì IM ⊥ BC (GT)
=> ∠IMB = 90o 
Mà ∠BAC = 90o (Theo (1))
(Ngoặc ''}'' 2 điều trên)
=> ∠BAC = ∠IMB = 90o
Hay ∠BAI = ∠IMB = 90o (2)
Xét ∆ABI và ∆MBI có :
∠BAI = ∠IMB = 90o (Theo (2))
  BI chung
  BA = BM (Gt)
=> ∆ABI = ∆MBI (cạnh huyền - cạnh góc vuông)
=> AI = IM (2 cạnh tương ứng) (3)

b) Ta có : ∠BAC + ∠NAC = 180(2 góc kề bù)
    Mà ∠BAC = 90o (Theo (1))
=> 90o + ∠NAC = 180
=> ∠NAC = 180- 90o = 90o
Vì IM ⊥ BC (GT) => ∠IMC = 90(ĐN)
(Ngoặc ''}'' 2 điều trên)
=> ∠NAC = ∠IMC = 90o
Hay ∠NAI = ∠IMC = 90o (4)
Lại có : ∠I1 = ∠I2 (2 góc đối đỉnh) (5)
Xét ∆ANI và ∆MCI có :
∠NAI = ∠IMC = 90o (Theo (4))
AI = MI (Theo (3))
∠I1 = ∠I(Theo (5))
=> ∆ANI = ∆MCI (g.c.g)
=> AN = MC (2 cạnh tương ứng)
Mà AN + BA = BN
      MC + BM = BC 
     BA = BM (GT)
(Ngoặc ''}'' 4 điều trên)
=> BN = BC
=> ∆NBC cân tại B (ĐN)
P/s : Xin lỗi, mình chỉ làm được đến đây thôi, nghỉ nhiều quá nên mình ngu hẳn, có gì mình nghiên cứu lại sau :(.

a: ΔACB cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{FCN}\)(hai góc đối đỉnh)

nên \(\widehat{ABC}=\widehat{FCN}\)

Xét ΔEBM vuông tại M và ΔFCN vuông tại N có

BM=CN

\(\widehat{EBM}=\widehat{FCN}\)

Do đó: ΔEBM=ΔFCN

=>EM=FN

b: ED//AC

=>\(\widehat{EDB}=\widehat{ACB}\)(hai góc đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EDB}=\widehat{ABC}\)

=>\(\widehat{EBD}=\widehat{EDB}\)

=>ΔEBD cân tại E

ΔEBD cân tại E

mà EM là đường cao

nên M là trung điểm của BD

=>MB=MD

c: EM\(\perp\)BC

FN\(\perp\)BC

Do đó: EM//FN

Xét ΔOME vuông tại M và ΔONF vuông tại N có

ME=NF

\(\widehat{MEO}=\widehat{NFO}\)(hai góc so le trong, EM//FN)

Do đó: ΔOME=ΔONF

=>OE=OF

23 tháng 12 2023

Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

BA=BD

Do đó: ΔBAM=ΔBDM

=>MA=MD

Xét ΔMAN vuông tại A và ΔMDC vuông tại D có

MA=MD

\(\widehat{AMN}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔMAN=ΔMDC

=>AN=DC và MN=MC

Ta có: BA+AN=BN

BD+DC=BC

mà BA=BD và AN=DC

nên BN=BC

=>B nằm trên đường trung trực của NC(1)

ta có: MN=MC

=>M nằm trên đường trung trực của NC(2)

Ta có: IN=IC

=>I nằm trên đường trung trực của NC(3)

từ (1),(2),(3) suy ra B,M,I thẳng hàng

25 tháng 3 2020

b) Vì AC=2AB

AB=BD

=>AC=AD

Xét tam giác ACE và tam giác ADE có:

AC=AD ( chứng minh trên ) 

^CAE=^EAD ( tính chất phân giác )

AE chung

=> tam giác ACE = tam giác ADE ( c.g.c )

=> ^CEA=^AED ( 2 góc tương ứng )

Mà ^CEA kề bù ^AED

=> ^CEA=^AED=90°

=> AE vuông góc CD

AI và AE là 2 tia trùng nhau

=> AI vuông góc CD

Vì AI vuông góc BM

Mà AI vuông góc CD

<=> BM // CD

Chúc bạn học tốt!

25 tháng 3 2020

Vì mình không tìm được cách gõ góc nên kí hiệu ^ là góc nhé! Mong bạn thông cảm