K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2018

kẻ IE vuông vs AC ; ID vuông vs AB

do Bi là p/g góc ABC

    CI là p/g góc ACB

suy ra ID=IK

lại có ID//AE ( cung vuông vs AD)

         IE//AD ( cùng vuông vs AE )

suy ra ID=IE=AD=AE=IK

đặt ID=IE=AD=AE=IK=x

xét tam giác BIK= tam giác BID

=) BD=BK=a

tương tự =) CK=CE=b

áp dụng định lí py ta go cho ABC vuông tại A ta có:

AB^2 + AC^2= BC^2

(a+x)^2 + (b+x)^2 = (a+b)^2

ax + bx +x^2 =ab

( phần sau tự lm)

12 tháng 1 2021

Đặt BC = a, CA = b, AB = c.

Do tam giác ABC vuông tại A nên: \(a^2=b^2+c^2\) (định lý Pytago).

Ta tính được: \(m=\dfrac{a+c-b}{2};n=\dfrac{c+b-a}{2}\).

Từ đó: \(mn=\dfrac{\left(a+c-b\right)\left(c+b-a\right)}{4}=\dfrac{c^2-\left(a-b\right)^2}{4}=\dfrac{\left(a^2+b^2\right)-\left(a-b\right)^2}{4}=\dfrac{ab}{2}=S_{ABC}\).

Vậy...

28 tháng 7 2021

chắc chắn ko bn

a: Xét ΔCIB có

CK,BA là đường cao

CK cắt BA tại H

=>H là trực tâm của ΔCIB

=>IH vuông góc BC

a: Xét ΔCIB có

CK,BA là đường cao

CK cắt BA tại H

=>H là trực tâm của ΔCIB

=>IH vuông góc BC

- Trường hợp tam giác vuông:

+) Xét tam giác ABC vuông tại A thì BA ⊥ CA hay A là giao điểm của hai đường vuông góc trong tam giác

⇒⇒ A trực tâm của tam giác.

Vậy trong tam giác vuông thì trực tâm trùng với đỉnh góc vuông.

+) Trường hợp tam giác tù:

Từ B kẻ đường thẳng BK vuông góc với CA.

Ta có: KA, KC lần lượt là hình chiếu của BA, BC.

Vì BC > BA nên KC > KA hay K phải nằm ngoài đoạn thẳng AC. Do đó ta có đường cao BK như hình vẽ.

Tương tự với đường cao CP.

Gọi H là giao điểm của BK và CP 

⇒⇒  H chính là trực tâm của tam giác.

Ta thấy H ở bên ngoài tam giác.

Vậy trực tâm của tam giác tù nằm ở bên ngoài tam giác đó.

Cách 2:

+ Xét ΔABC vuông tại A

Giải bài 58 trang 83 SGK Toán 7 Tập 2 | Giải toán lớp 7

AB ⏊AC ⇒ AB là đường cao ứng với cạnh AC và AC là đường cao ứng với cạnh AB

hay AB, AC là hai đường cao của tam giác ABC.

Mà AB cắt AC tại A

⇒ A là trực tâm của tam giác vuông ABC.

Vậy: trực tâm của tam giác vuông trùng với đỉnh góc vuông

+ Xét ΔABC tù có góc A tù, các đường cao CE, BF (E thuộc AB, F thuộc AC), trực tâm H.

Giải bài 58 trang 83 SGK Toán 7 Tập 2 | Giải toán lớp 7

+ Giả sử E nằm giữa A và B, khi đó

Giải bài 58 trang 83 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vậy E nằm ngoài A và B

⇒ tia CE nằm ngoài tia CA và tia CB ⇒ tia CE nằm bên ngoài ΔABC.

+ Tương tự ta có tia BF nằm bên ngoài ΔABC.

+ Trực tâm H là giao của BF và CE ⇒ H nằm bên ngoài ΔABC.

Vậy : trực tâm của tam giác tù nằm ở bên ngoài tam giác.

https://www.google.com/search?sxsrf=ACYBGNShkLL-JlrB5LGT8WMfh0jTHv-mgw:1581944122307&q=-Cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+c%C3%A2n+t%E1%BA%A1i+A.+G%E1%BB%8Di+I,+K+theo+th%E1%BB%A9+t%E1%BB%B1+l%C3%A0+trung+%C4%91i%E1%BB%83m+c%E1%BB%A7a+AB,+AC.+G%E1%BB%8Di+H,D+th%E1%BB%A9+t%E1%BB%B1+l%C3%A0+h%C3%ACnh+chi%E1%BA%BFu+c%E1%BB%A7a+I,A+tr%C3%AAn+BK,+M+l%C3%A0+h%C3%ACnh+chi%E1%BA%BFu+c%E1%BB%A7a+A+tr%C3%AAn+HI.+O+l%C3%A0+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+BM+v%C3%A0+AC+,P+l%C3%A0+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+AB+v%C3%A0+DM+a)+C/m+tam+gi%C3%A1c+DAK+%3D+tam+gi%C3%A1c+HBI+b)+T%C3%ADnh+s%E1%BB%91+g%C3%B3c+ADC+c)C/m+OP+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+BC&tbm=isch&source=univ&sa=X&ved=2ahUKEwi7rNuL0djnAhUKzTgGHYr8DnMQsAR6BAgDEAE&biw=1137&bih=692

7 tháng 6 2019

Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha 

~ Hok tốt ~
#JH

7 tháng 6 2019

a) 

Xét tam giác ABC ta có

\(AB^2+AC^2=BC^2\)(định lý py ta go)

144 + 256 = BC2

400 = BC2

BC = 20 ( cm )

Xét tam giác ABC có 

BD là đường phân giác của tam giác 

nên AD/DC = AB/BC = 16/20 = 4/5

có AD + DC = AC = 16 

dễ tìm ra AD = 64/9  (cm)

DC = 80/9 (cm)

b) xét 2 tam giác HBA và ABC

có góc ABC chung

2 góc AHB và CAB bằng nhau cùng bằng 90 độ

nên 2 tam giác HAB và ABC đồng dạng với nhau

c)

có 2 tam giác HAB và ABC đồng dạng với nhau

nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)

d)

có E là hình chiếu của của C trên BD

nên \(CE\perp BD\)

suy ra \(\widehat{BEC}=90^0\)

xét 2 tam giác BHK và BEC

có \(\widehat{BHK}=\widehat{BEC}=90^0\)

\(\widehat{CEB}\)chung

nên 2 tam giác BHK và BEC đồng dạng với nhau

suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)

có 2 tam giác HAB và ABC đồng dạng với nhau

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)

từ (1) và (2) suy ra 

\(AB^2=BK\cdot BE\)

26 tháng 4 2017

a, Xét tg ABC và tg HBA có:

       góc H = góc A (= 90o)

       góc B chung

=> Tg ABC đông dạng với tg HBA

Câu b, lm theo cách của mk thì hơi dài dòng bn muốn tham khảo thì mk sẽ lm còn câu c, thì mk phải lm đc câu b đã thì sẽ ra câu c

26 tháng 4 2017

bạn giải tiếp cho mk vs