Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔEBD có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=góc BAD=90 độ
=>ΔBED vuông tại E
c: AD=DE
DE<DC
=>AD<DC
d: AB+EF=BE+EF
mà BE+EF>BF
nên AB+EF>BF
Xét ΔABDΔABD và ΔEBDΔEBD, ta có:
AB=BE ( gt)
ABDˆ=EBDˆABD^=EBD^ ( Vì BD là tia phân giác của góc B)
BD chung
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (c-g-c)
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
a:
Sửa đề: Chứng minh DE\(\perp\)BC
Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
=>\(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
b: Sửa đề: F là giao điểm của AB và DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAF=ΔDEC
=>AF=EC
a) Xét tam giác ABD và EBD CÓ
BD chung, góc abd= góc ebd, BE=BA
do dố tam giác abd= tam giác ebd (c-g-c)
b) vì tam giác ABD= tam giác EBD do đó
góc A= góc E (2 góc tương ứng)
mà góc A=90 nên góc E=90
=>DE vuông góc BC
c) Xét tam giác ADF và tam giác EDC có
AD=DE (TAM GIÁC ABD= EBD), GÓC A=GÓC E=90, HAI GÓC D BẰNG NHAU VÌ ĐỐI ĐỈNH
DO ĐÓ TAM GIÁC ADF= TAM GIÁC EDC
=>DF=DC (2 CẠNH TƯƠNG ỨNG )
MÌNH ĐÁNH CAPSLOCK THÔNG CẢM
Xét △ ABD và △ EBD
có \(\hept{\begin{cases}AB=EB\\\widehat{ABD}=\widehat{EBD}\\BD=DB\end{cases}}\)
\(\Rightarrow\text{△}ABD=\text{△}EBD\)
\(\Rightarrow DA=DE\)
Ta có: △ ABD = △ EBD
\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^0\)
\(\Rightarrow\widehat{BED}=90^0\)
Ta có: \(\widehat{FAD}+\widehat{DAC}=180^0\Rightarrow\widehat{FAD}=180^0-\widehat{DAC}\Rightarrow\widehat{FAD}=90^0\)
Ta có:\(\widehat{DEC}+\widehat{DEB}=180^0\Rightarrow\widehat{DEC}=180^0-\widehat{DEB}\Rightarrow\widehat{DEC}=90^0\)
Xét △ FAD và △ CED
có \(\hept{\begin{cases}\widehat{FAD}=\widehat{CED}\\DA=DE\\\widehat{ADF}=\widehat{EDC}\end{cases}}\)
\(\Rightarrow\text{△}FAD=\text{△}CED\)
\(\Rightarrow DC=DF\)
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>\(\widehat{BED}=\widehat{BAD}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
b: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔDAF=ΔDEC
=>DF=DC