Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
a: Xét ΔMAD và ΔMCB có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)
MD=MB
Do đó: ΔMAD=ΔMCB
=>AD=BC
b: Xét ΔMAB và ΔMCD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD
Do đó: ΔMAB=ΔMCD
=>\(\widehat{MAB}=\widehat{MCD}=90^0\)
=>CD\(\perp\)CA
c: Xét tứ giác ABNC có
AB//NC
AC//BN
Do đó: ABNC là hình bình hành
=>AB=CN
Xét ΔABM vuông tại A và ΔCNM vuông tại C có
AB=CN
AM=CM
Do đó: ΔABM=ΔCNM
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a) Xét \(\Delta ABD\) và \(\Delta EBD:\)
BD chung.
\(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác \(\widehat{B}).\)
\(\Rightarrow\Delta ABD=\Delta EBD\) (cạnh huyền - góc nhọn).
\(\Rightarrow\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).
Mà \(\widehat{BAD}=90^o\left(\widehat{BAC}=90^o\right).\)
\(\Rightarrow\widehat{BED}=90^o.\)
\(b)\Delta ABD=\Delta EBD\left(cmt\right).\\ \Rightarrow AB=EB.\)
Xét \(\Delta ABE:\)
\(AB=EB\left(cmt\right).\)
\(\Rightarrow\Delta ABE\) cân tại B (Tính chất tam giác cân).
Xét \(\Delta ABE\) cân tại B:
BD là phân giác \(\widehat{B}\left(gt\right).\)
\(\Rightarrow\) BD là trung trực của AE (Tính chất các đường trong tam giác cân).