K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

a: Xét tứ giác AMHN có

AM//HN

AN//HM

Do đó: AMHN là hình bình hành

Hình bình hành AMHN có \(\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

b: Ta có: AMHN là hình bình hành

=>HM//AN và HM=AN

Ta có: HM//AN

N\(\in\)AE

Do đó: HM//ND

Ta có: HM=NA

NA=ND

Do đó: HM=ND

Xét tứ giác MHDN có

MH//DN

MH=DN

Do đó: MHDN là hình bình hành

c: Gọi O là giao điểm của AH và NM

Ta có: ANHM là hình chữ nhật

=>AH=MN và AH cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và MN

Ta có: ΔAEH vuông tại E

mà EO là đường trung tuyến

nên \(EO=\dfrac{AH}{2}=\dfrac{MN}{2}\)

Xét ΔNEM có

EO là đường trung tuyến

\(EO=\dfrac{NM}{2}\)

Do đó: ΔNEM vuông tại E

=>NE\(\perp\)ME

29 tháng 12 2023

 

a: Xét tứ giác AMHN có

AM//HN

AN//HM

Do đó: AMHN là hình bình hành

Hình bình hành AMHN có \(\widehat{MAN}=90^0\)

nên AMHN là hình chữ nhật

b: Ta có: AMHN là hình bình hành

=>HM//AN và HM=AN

Ta có: HM//AN

N\(\in\)AE

Do đó: HM//ND

Ta có: HM=NA

NA=ND

Do đó: HM=ND

Xét tứ giác MHDN có

MH//DN

MH=DN

Do đó: MHDN là hình bình hành

c: Gọi O là giao điểm của AH và NM

Ta có: ANHM là hình chữ nhật

=>AH=MN và AH cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và MN

Ta có: ΔAEH vuông tại E

mà EO là đường trung tuyến

nên \(EO=\dfrac{AH}{2}=\dfrac{MN}{2}\)

Xét ΔNEM có

EO là đường trung tuyến

\(EO=\dfrac{NM}{2}\)

Do đó: ΔNEM vuông tại E

=>NE\(\perp\)ME

31 tháng 12 2022

a: Xét tứ giác AEMF có

AE//MF

AF//ME

góc EAF=90 độ

Do đó: AEMF là hình chữ nhật

b: \(S_{ABC}=\dfrac{1}{2}\cdot6\cdot4=3\cdot4=12\left(cm^2\right)\)

5 tháng 11 2017

a)  gócm=gócb =gócc=gócn mn // bc

b) ncf=cne=anm=gócb=cfe=fen; tam giác ine=tam giác icf suy ra ne=cf 

c) suy ra necf là hình bình hành có fe=in+nc=ie+if =nc nên necf là hcn

16 tháng 12 2021

a: Xét tứ giác AEMF có 

AE//MF

ME//AF

Do đó: AEMF là hình bình hành

mà \(\widehat{FAE}=90^0\)

nên AEMF là hình chữ nhật

a: Xét tứ giác AEMF có

góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

b: \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)

 

a: Xét tứ giác AKMN có 

MN//AK

AN//MK

Do đó: AKMN là hình bình hành

mà \(\widehat{NAK}=90^0\)

nên AKMN là hình chữ nhật

b: Xét ΔAMQ có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAMQ cân tại A

mà AN là đường cao

nên AN là tia phân giác của góc MAQ(1)

Xét ΔAME có 

AK là đường cao

AK là đường trung tuyến

DO đó: ΔAME cân tại A

mà AK là đường cao

nên AK là tia phân giác của góc MAE(2)

Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)

hay Q,E,A thẳng hàng