Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMHN có
AM//HN
AN//HM
Do đó: AMHN là hình bình hành
Hình bình hành AMHN có \(\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Ta có: AMHN là hình bình hành
=>HM//AN và HM=AN
Ta có: HM//AN
N\(\in\)AE
Do đó: HM//ND
Ta có: HM=NA
NA=ND
Do đó: HM=ND
Xét tứ giác MHDN có
MH//DN
MH=DN
Do đó: MHDN là hình bình hành
c: Gọi O là giao điểm của AH và NM
Ta có: ANHM là hình chữ nhật
=>AH=MN và AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Ta có: ΔAEH vuông tại E
mà EO là đường trung tuyến
nên \(EO=\dfrac{AH}{2}=\dfrac{MN}{2}\)
Xét ΔNEM có
EO là đường trung tuyến
\(EO=\dfrac{NM}{2}\)
Do đó: ΔNEM vuông tại E
=>NE\(\perp\)ME
a: Xét tứ giác AMHN có
AM//HN
AN//HM
Do đó: AMHN là hình bình hành
Hình bình hành AMHN có \(\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Ta có: AMHN là hình bình hành
=>HM//AN và HM=AN
Ta có: HM//AN
N\(\in\)AE
Do đó: HM//ND
Ta có: HM=NA
NA=ND
Do đó: HM=ND
Xét tứ giác MHDN có
MH//DN
MH=DN
Do đó: MHDN là hình bình hành
c: Gọi O là giao điểm của AH và NM
Ta có: ANHM là hình chữ nhật
=>AH=MN và AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Ta có: ΔAEH vuông tại E
mà EO là đường trung tuyến
nên \(EO=\dfrac{AH}{2}=\dfrac{MN}{2}\)
Xét ΔNEM có
EO là đường trung tuyến
\(EO=\dfrac{NM}{2}\)
Do đó: ΔNEM vuông tại E
=>NE\(\perp\)ME
a: Xét tứ giác AEMF có
AE//MF
AF//ME
góc EAF=90 độ
Do đó: AEMF là hình chữ nhật
b: \(S_{ABC}=\dfrac{1}{2}\cdot6\cdot4=3\cdot4=12\left(cm^2\right)\)
a) gócm=gócb =gócc=gócn mn // bc
b) ncf=cne=anm=gócb=cfe=fen; tam giác ine=tam giác icf suy ra ne=cf
c) suy ra necf là hình bình hành có fe=in+nc=ie+if =nc nên necf là hcn
a: Xét tứ giác AEMF có
AE//MF
ME//AF
Do đó: AEMF là hình bình hành
mà \(\widehat{FAE}=90^0\)
nên AEMF là hình chữ nhật
a: Xét tứ giác AEMF có
góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
b: \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)
a: Xét tứ giác AKMN có
MN//AK
AN//MK
Do đó: AKMN là hình bình hành
mà \(\widehat{NAK}=90^0\)
nên AKMN là hình chữ nhật
b: Xét ΔAMQ có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAMQ cân tại A
mà AN là đường cao
nên AN là tia phân giác của góc MAQ(1)
Xét ΔAME có
AK là đường cao
AK là đường trung tuyến
DO đó: ΔAME cân tại A
mà AK là đường cao
nên AK là tia phân giác của góc MAE(2)
Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)
hay Q,E,A thẳng hàng
a: Xét tứ giác APMN có
NM//AP
MP//AN
Do đó: APMN là hình bình hành
mà \(\widehat{NAP}=90^0\)
nên APMN là hình chữ nhật