K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

Tương tự HS tự làm

NV
28 tháng 7 2021

a. Gọi G là trung điểm AD

Tam giác ABC đều \(\Rightarrow\widehat{B}=\widehat{C}=60^0\)

\(CD=BC-BD=40\left(cm\right)\)

Trong tam giác vuông BDI:

\(sinB=\dfrac{ID}{BD}\Rightarrow DI=BD.sinB=20.sin60^0=10\sqrt{3}\left(cm\right)\)

\(cosB=\dfrac{IB}{BD}\Rightarrow IB=BD.cosB=20.cos60^0=10\left(cm\right)\)

Trong tam giác vuông CDK:

\(sinC=\dfrac{DK}{CD}\Rightarrow DK=CD.sinC=40.sin60^0=20\sqrt{3}\left(cm\right)\)

\(cosC=\dfrac{KC}{CD}\Rightarrow KC=CD.cosC=40.cos60^0=20\left(cm\right)\)

NV
28 tháng 7 2021

b. Gọi M là trung điểm BC \(\Rightarrow BM=CM=\dfrac{1}{2}BC=30\left(cm\right)\)

\(DM=BM-BD=10\left(cm\right)\) ; \(AM=\dfrac{AB\sqrt{3}}{2}=30\sqrt{3}\left(cm\right)\)

Áp dụng định lý Pitago cho tam giác vuông ADM:

\(AD=\sqrt{AM^2+DM^2}=20\sqrt{7}\left(cm\right)\)

 \(AG=DG=\dfrac{AD}{2}=10\sqrt{7}\left(cm\right)\)

\(AI=AB-BI=50\left(cm\right)\)

Hai tam giác vuông AEG và ADI đồng dạng (chung góc \(\widehat{IAD}\))

\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AG}{AI}\Rightarrow AE=\dfrac{AG.AD}{AI}=28\left(cm\right)\)

Do EG là trung trực AD \(\Rightarrow DE=AE=28\left(cm\right)\)

Tương tự ta có \(AK=AC-CK=40\left(cm\right)\)

Hai tam giác vuông AGF và AKD đồng dạng

\(\Rightarrow\dfrac{AG}{AK}=\dfrac{AF}{AD}\Rightarrow AF=\dfrac{AG.AD}{AK}=35\left(cm\right)\)

\(\Rightarrow DF=AF=35\left(cm\right)\)

\(EF=EG+FG=\sqrt{AE^2-AG^2}+\sqrt{AF^2-AG^2}=7\sqrt{21}\left(cm\right)\)

24 tháng 6 2019

Tứ giác AEHD là hình chữ nhật vì:  A ^ = E ^ = D ^ = 90 o nên DE = AH.

Xét ABC vuông tại A có: A H 2 = HB.HC = 9.16 = 144 => AH = 12

Nên DE = 12cm

Đáp án cần chọn là: A

22 tháng 10 2019

Tứ giác ARHD là hình chữ nhật vì:  A ^ = E ^ = D ^ = 90 ∘ nên DE = AH.

Xét ∆ ABC vuông tại A có A H 2 = HB.HC = 4.9 = 36 ⇔ AH = 6

Nên DE = 6cm

Đáp án cần chọn là : D

13 tháng 10 2022

a: \(AB=\sqrt{3\cdot15}=3\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{12\cdot15}=6\sqrt{5}\left(cm\right)\)

b: \(\dfrac{HF}{HE}=\dfrac{AE}{AF}=\dfrac{AH^2}{AB}:\dfrac{AH^2}{AC}=\dfrac{AC}{AB}=2\)

=>HF=2HE