Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét \(\Delta ABC\)vuông tại A
\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)
THAY\(BC^2=5^2+40^2\)
\(BC^2=25+1600\)
\(BC^2=1625\)
\(\Rightarrow BC=\sqrt{1625}\)
B) XÉT LẦN LƯỢT CÁC \(\Delta ABH;\Delta ACH\)
CÓ \(\hept{\begin{cases}AB^2=BH^2+HA^2\\AC^2=HC^2+HA^2\end{cases}}\)
\(\hept{\begin{cases}AB^2=BH^2+HA^2\left(1\right)\\HC^2=AC^2-HA^2\left(2\right)\end{cases}}\)
CỘNG VẾ THEO VẾ ( 1) VÀ (2)
\(\Rightarrow AB^2+CH^2=BH^2+HA^2+AC^2-HA^2\)
\(\Rightarrow AB^2+CH^2=AC^2-HA^2+HA^2+BH^2\)
\(\Rightarrow AB^2+CH^2=AC^2+BH^2\left(ĐPCM\right)\)(- HA ^2 + HA^2 ĐỐI NHAU NÊN = 0 )
Mình làm hơi tắt chút do ngại trình bầy cái định lý pi - ta - go ở tam giác BDE
a, Ta có góc BAC=BAH ( vì cùng phụ với góc ABH )
b, => Cần chứng minh \(AB^2-BH^2=AC^2-CH^2\) (1)
Theo định lý Py-ta-go :
Trong tam giác vuông AHB có : \(AB^2-BH^2=AH^2\)
Trong tam giác vuông AHC có : \(AC^2-HC^2=AH^2\)
=> VT= VP => (1) đúng đpcm
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trug điểm của BC
hay HB=HC
b: BC=6cm
nên BH=3cm
=>\(AH=\sqrt{10^2-3^2}=\sqrt{91}\left(cm\right)\)
c: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔAEH=ΔAFH
Suy ra: AE=AF
hay ΔAEF cân tại A
Bài làm:
Ta có:
Xét trong tam giác vuông BHA vuông tại H có:
\(\widehat{BAH}+\widehat{ABH}=90^0\Rightarrow\widehat{BAH}=90^0-\widehat{ABH}=90^0-\widehat{B}\)(1)
Xét trong tam giác vuông ABC vuông tại A có:
\(\widehat{ABC}+\widehat{ACB}=90^0\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{B}\)(2)
Từ (1) và (2)
=> \(\widehat{BAH}=\widehat{ACB}=\widehat{C}\)
b) Phần b mình nghĩ bạn viết sai đề rồi nhé
Mình nghĩ đề sửa lại phải là: \(AB^2+CH^2=AC^2+BH^2\)
Xét tam giác vuông AHB vuông tại H có:
\(AB^2=BH^2+AH^2\)\(\Rightarrow AB^2-BH^2=AH^2\left(3\right)\)
Xét tam giác vuông AHC vuông tại H có:
\(AC^2=CH^2+AH^2\)\(\Rightarrow AC^2-CH^2=AH^2\)(4)
Từ (3) và (4)
=> \(AB^2-BH^2=AC^2-CH^2\)
<=> \(AB^2+CH^2=AC^2+BH^2\)
=> ĐPCM
Học tốt!!!!