K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

a) xét tam giác ABD và tam giác ACD có

AB=AC,AD là cạnh chung góc BAD= góc DAC

vậy tam giác ABD=tam giác ACD(C.g.c)

Suy ra gócADB=gócADC=1/2BDC=1/2*180=90

Hay AD vuông góc với BC

5 tháng 10 2023

a) Để chứng minh a) ta cần chứng minh rằng góc ADC bằng góc BEC.

Vì AD là đường phân giác của góc BAC, nên ta có:

∠DAB = ∠DAC (1)

Tương tự, vì BE là đường phân giác của góc ABC, nên ta có:

∠CBA = ∠CBE (2)

Từ (1) và (2), ta có:

∠DAB + ∠CBA = ∠DAC + ∠CBE

∠DAB + ∠CBA = ∠BAC + ∠ABC

∠DAB + ∠CBA = ∠ABC + ∠BAC

Do đó, góc ADC bằng góc BEC.

Tiếp theo, để chứng minh rằng góc A bằng góc B, ta sử dụng định lý phụ của đường phân giác:

∠DAB = ∠DAC

∠EBA = ∠EBC

Vì ∠ADC = ∠BEC (đã chứng minh ở trên), nên ta có:

∠DAC + ∠ADC = ∠DAB + ∠ABC

∠DAB + ∠ABC = ∠DAC + ∠ADC

Từ đây, suy ra ∠A = ∠B.

Vậy, điều phải chứng minh a) đã được chứng minh.

b) Để chứng minh b), ta cần chứng minh rằng góc ADB bằng góc BEC.

Từ ∠ADB = ∠BEC (đã chứng minh ở a)), ta có:

∠ADB + ∠BEC = ∠BEC + ∠BEC

∠ADB + ∠BEC = 2∠BEC

∠ADB = ∠BEC

Do đó, góc ADB bằng góc BEC.

Tiếp theo, ta có:

∠A + ∠B + ∠C = 180° (định lý tổng các góc trong tam giác)

∠ADB + ∠B + ∠BEC = 180°

∠BEC + ∠B + ∠BEC = 180° (vì ∠ADB = ∠BEC)

2∠BEC + ∠B = 180°

2∠BEC = 180° - ∠B

∠BEC = (180° - ∠B) / 2

∠BEC = 90° - ∠B/2

∠BEC = 90° - ∠A/2 (vì ∠A = ∠B)

∠A/2 + ∠B/2 + ∠C = 90°

∠A/2 + ∠B/2 + ∠C = 90° - ∠A/2

∠A/2 + ∠A/2 + ∠C = 90° - ∠A/2

∠A + ∠C = 90° - ∠A/2

∠A + ∠C + ∠A/2 = 90°

2∠A + ∠C = 180°

∠A + ∠C = 180° - ∠A

∠A + ∠C = ∠B

∠A + ∠B + ∠C = 180°

∠A + ∠B + ∠C = 120° + 60°

∠A + ∠B + ∠C = 180°

Do đó, ∠A + ∠B = 120°.

Vậy, điều phải chứng minh b) đã được chứng minh.

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0

4 tháng 11 2019

a/ tam giác BAH và tam giác CAH có 

AB=AC ( tam giác ABC cân vì góc B = góc C)

góc BHA = góc CHA = 90 độ

góc B = góc C

=> tam giác BAH = tam giác CAH (CH - GN)

=>góc BAH = góc HAC