K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

a)tứ giác ABMC là hình chữ nhật (vì là hbh có 1 góc vuông)

b)Xét tam giác ABC có:BE=AE,DB=DC=>ED là đường trung bình của tam giác ABC

=>ED//AC=>ED//AF         (1)

C/M tương tự DF//AE(DF là đường trung bình của tam giác BAC)           (2)

Từ (1),và (2)=>EDFA là hbh.Mà BAC^=90độ=>EDFA là hcn(hbh có 1 góc vuông)

d)ĐK:tam giác ABC là tam giác cân=>AB=AC      (4)

Vì AE=1/2AB,AF=1/2AC               (5)                     

   Từ (4) và (5)=>AE=AF=>ADEF là hình vuông(vì AEDF mik đã c/m là hcn ở ý b rồi)(hcn có 2 cạnh kề bắng nhau là hình vuông)

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

b: Xét ΔABC có 

D là trung điểm của BC

DE//AC

Do đó: E là trung điểm của AB

Xét tứ giác AIBD có 

E là trung điểm của AB

E là trung điểm của ID

Do đó: AIBD là hình bình hành

mà AB\(\perp\)DI

nên AIBD là hình thoi

12 tháng 12 2017

hinh nhu ban viet sai de bai,cau a phai la hinh binh hanh chu

16 tháng 12 2017

tam giác ABC vuông tại A kìa

14 tháng 12 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: Ta có: ΔCEH vuông tại E

mà EK là đường trung tuyến

nên KE=KH

=>ΔKEH cân tại K

=>\(\widehat{KEH}=\widehat{KHE}\)

mà \(\widehat{KHE}=\widehat{ABC}\)(hai góc so le trong, HE//AB)

nên \(\widehat{KEH}=\widehat{ABC}\)

Ta có: ADHE là hình chữ nhật

=>\(\widehat{HAD}=\widehat{HED}\)

Ta có: \(\widehat{DEK}=\widehat{KEH}+\widehat{DEH}\)

\(=\widehat{ABC}+\widehat{HAB}\)

\(=90^0\)

=>DE\(\perp\)EK

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

ΔMDB vuông tại D có DI là trung tuyến

nên DI=MI=BI

ΔMEC vuông tại E có EK là trung tuyến

nên KC=KM=KE

Xét ΔABC có

M là trung điểm của BC

MD//AC

=>D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

=>E là trung điểm của AC

Xét ΔABC có D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình 

=>DE//BC và DE=BC/2

KI=KM+MI

=1/2(MC+MB)

=1/2BC

=DE

Xét tứ giác DIKE có

DE//KI

DE=KI

=>DIKE là hình bình hành

b: DIKE là hình chữ nhật

=>góc DIK=90 độ

=>DI vuông góc MB

Xét ΔDMB có

DI vừa là đường cao, vừa là đường trung tuyến

=>ΔDMB cân tại D

mà ΔDMB vuông cân tại D

nên góc B=45 độ

14 tháng 11 2023

sai câu a DIKE LÀ HBH ??

29 tháng 11 2023

a) Để chứng minh tứ giác AEDF là hình chữ nhật, ta cần chứng minh các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 90 độ.

 

Ta có:

- AD là đường cao của tam giác ABC, nên AEDF là hình chữ nhật nếu và chỉ nếu AE = DF.

- AE là hình chiếu của D lên AB, nên AE = DD' (với D' là hình chiếu của D lên AB).

- DF là hình chiếu của D lên AC, nên DF = DD'' (với D'' là hình chiếu của D lên AC).

 

Vậy để chứng minh AEDF là hình chữ nhật, ta cần chứng minh DD' = DD''. 

 

Ta có tam giác DDD' và tam giác DDD'' là hai tam giác vuông có cạnh chung DD'. Vì vậy, ta có:

- DD' = DD'' (cạnh huyền của hai tam giác vuông bằng nhau)

- Góc DDD' = Góc DDD'' = 90 độ (góc vuông)

 

Vậy tam giác DDD' và tam giác DDD'' là hai tam giác vuông cân có cạnh chung DD'. Do đó, ta có DD' = DD''.

 

Vậy AE = DF, tứ giác AEDF là hình chữ nhật.

 

b) Gọi I là trung điểm của EF. Ta cần chứng minh A, I, D thẳng hàng.

 

Vì I là trung điểm của EF, nên AI là đường trung bình của tam giác AEF. Do đó, ta có AI song song với đường cao DD' của tam giác ABC.

 

Vì AEDF là hình chữ nhật, nên AE song song với DF. Khi đó, ta có AI song song với EF.

 

Vậy ta có AI song song với cả DD' và EF. Do đó, A, I, D thẳng hàng.

 

Vậy ta đã chứng minh được A, I, D thẳng hàng.

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K