Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
ta có: BA=BE
=>B nằm trên trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE tại trung điểm của AE
c: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Ta có: AH\(\perp\)BC
DE\(\perp\)BC
Do đó: AH//DE
d: Ta có: \(\widehat{EDC}+\widehat{ACB}=90^0\)(ΔEDC vuông tại E)
\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{EDC}=\widehat{ABC}\)
e: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAK=ΔDEC
=>AK=EC và DK=DC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE và AK=EC
nên BK=BC
=>B nằm trên đường trung trực của KC(3)
Ta có: DK=DC
=>D nằm trên đường trung trực của KC(4)
Ta có: MK=MC
=>M nằm trên đường trung trực của KC(5)
Từ (3),(4),(5) suy ra B,D,M thẳng hàng
a ) Vì CM là tia phân giác của góc KCH
\(\Rightarrow\)Góc KCM = Góc HCM = 50° / 2 = 25°
Trong \(\Delta\)CHM có :
Góc MHC + Góc CMH + Góc MCH = 180°
\(\Leftrightarrow\)90° + Góc CMH + 25° = 180°
\(\Leftrightarrow\)Góc CMH = 65°
b ) Xét \(\Delta\)CMK và \(\Delta\)CMH có :
- CK = CH ( giả thiết )
- Góc KCM = Góc HCM ( vì CM là tia phân giác của góc KCH )
- MC : cạnh chung
\(\Rightarrow\)\(\Delta\)CMK = \(\Delta\)CMH ( C - G - C )
\(\Rightarrow\)MK = MH ( 2 cạnh tương ứng )
c ) Ta có : MK = MH ( cmt )
\(\Rightarrow\)M nằm trên đường trung trực của KH ( 1 )
Ta lại có : CK = CH ( giả thiết )
\(\Rightarrow\)C nằm trên đường trung trực của KH ( 2 )
Từ ( 1 ) và ( 2 ), suy ra MC là đường trung trực của KH
\(\Rightarrow\)MC \(\perp\)KH
d ) Ta có : Góc KCH + Góc HCN = 90° ( vì NC \(\perp\)KC )
\(\Rightarrow\)Góc KCM + Góc HCM + Góc HCN = 90°
\(\Rightarrow\)25° + Góc NCM = 90°
\(\Rightarrow\)Góc NCM = 65°
Mà ta có : Góc NMC = 65°
\(\Rightarrow\)Góc NCM = Góc NMC
a) Xét \(\Delta ABE\)và \(\Delta FBE\)có:
\(BA=BF\left(gt\right)\)
\(\widehat{ABE}=\widehat{FBE}\left(gt\right)\)
\(BE\)là cạnh chung
Do đó \(\Delta ABE=\Delta FBE\left(c.g.c\right)\)
b) Vì \(\Delta ABE=\Delta FBE\)(câu a)
Nên \(\widehat{BAE}=\widehat{BFE}\)(2 góc tương ứng)
Mà \(\widehat{BAE}=90^o\left(gt\right)\)
Nên \(\widehat{BFE}=90^o\)
a: Xét ΔCAE và ΔCDE có
CA=CD
\(\widehat{ACE}=\widehat{DCE}\)
CE chung
Do đó: ΔCAE=ΔCDE
a, Xét tam giác ABI và tam giác KBI có :
BA=BK (gt)
góc ABI = góc IBK
BI cạnh chung
=> tam giác ABI = tam giác KBI (cgc)
b, mk k chắc về cách lm
Nhớ k nha